55 research outputs found

    Molecular basis of the interactions between carbohydrate antigens and monoclonal antibodies

    Get PDF
    Carbohydrate-based vaccines induce an immune response against surface glycans found on pathogenic bacteria and are used to protect children from meningitis and other bacterial diseases. The definition of the epitope targeted by protective antibodies is a crucial information for the design, description and even registration of glycoconjugate vaccines. The aim of this project is the characterization at atomic level of the interaction between Group B Streptococcus (GBS) oligosaccharides with functional antibodies mediating bacterial phagocytic killing. The specificity of anti-GBS type III polysaccharide (GBS PSIII) antibodies has been ascribed to a conformational epitope with an extended helical structure which would be formed by multiple repeating units. Here fragments of GBS PSIII were obtained by chemical synthesis and by sizing of the native polysaccharide from bacterial source. The oligosaccharides (OSs) were purified by ion exchange chromatography and were characterized by mass spectrometry, HPLC and NMR analysis. First, the obtained OSs were used to characterize the interaction to protective anti PSIII rabbit monoclonal antibody (mAb) by competitive ELISA and surface plasmon resonance analysis. The dependence of binding affinity on oligosaccharide length was confirmed and the minimal structures showing comparable binding to full-length PS III were identified. Next, a combination of saturation transfer difference NMR (STD-NMR) and X-ray crystallography was used to map at atomic level the interactions in the rabbit mAb-OS complex. The challenging crystallization of the carbohydrate-protein complex was achieved and the molecular bases of the antigen-antibody interaction were unveiled. The obtained results were used to optimize a vaccine based on short GBS PSIII fragments

    application of the ads method to predict a hidden basal detachment nw borneo fold and thrust belt

    Get PDF
    Abstract The NW Borneo margin is characterized by a complex deepwater fold-and-thrust belt. Despite previous studies, the definition of a univocal detachment level for folding and thrusting is still lacking. The area-depth-strain (ADS) method can be used to determine the location for a detachment in areas lacking data, and to balance geological cross sections. This study applies the ADS method to the central part of the NW Borneo fold-and-thrust belt to predict a structurally conclusive detachment level in an area lacking a seismic detachment reflection. Seismic interpretations were completed after the ADS-determination of the basal detachment, providing input for a 2D sequential restoration that delivered values on shortening distribution and shortening rate. The kinematic and mechanic analyses presented, document that the central part of the NW Borneo fold-and-thrust belt is affected by both, near- and far-field stresses, and that the far-field crustal shortening component becomes more important northward. This work demonstrates that the ADS method can be effectively applied in fold-thrust belt settings with limited information on the detachment, supports in a quantitative way the tectonic and stratigraphic interpretation of seismic-reflection data and provides a robust structural base for the restoration of balanced cross-sections, including the reconstruction of syn-kinematically eroded stratigraphy

    Implementing the European Space Agency’s SentiNel application platform’s open-source Python module for differential synthetic aperture radar interferometry coseismic ground deformation from Sentinel-1 data

    Get PDF
    Differential SAR Interferometry is a largely exploited technique to study ground deformations. A key application is the detection of the effects promoted by earthquakes, including detailed variations in ground deformations at different scales. In this work, an implemented Python script (Snap2DQuake) based on the “snappy” module by SNAP software 9.0.8 (ESA) for the processing of satellite imagery is proposed. Snap2DQuake is aimed at producing detailed coseismic deformation maps using Sentinel-1 C-band data by the DInSAR technique. With this alternative approach, the processing is simplified, and several issues that may occur using the software are solved. The proposed tool has been tested on two case studies: the Mw 6.4 Petrinja earthquake (Croatia, December 2020) and the Mw 5.7 to Mw 6.3 earthquakes, which occurred near Tyrnavós (Greece, March 2021). The earthquakes, which occurred in two different tectonic contexts, are used to test and verify the validity of Snap2DQuake. Snap2DQuake allows us to provide detailed deformation maps along the vertical and E-W directions in perfect agreement with observations reported in previous works. These maps offer new insights into the deformation pattern linked to earthquakes, demonstrating the reliability of Snap2DQuake as an alternative tool for users working on different applications, even with basic coding skills.Peer ReviewedPostprint (published version

    The influence of subsurface geology on the distribution of earthquakes during the 2016‐-2017 Central Italy seismic sequence

    Get PDF
    Abstract In 2016–2017, a destructive sequence of earthquakes affected a wide portion of Central Italy, activating a complex, 80-km long system of SW-dipping normal faults and causing impressive surface faulting and widespread damage. Former studies providing reconstructions of the fault systems activated during this sequence, are mostly based on high-resolution seismological and geodetic data. In this paper, we integrate surface and subsurface geological data with the ones obtained by an irregular network of seismic reflection profiles, aimed at providing a comprehensive reconstruction of the subsurface lithologies and structures in this area. We have constructed a set of five geological cross-sections, passing through the mainshock epicentral areas (Mw > 5.5) of the seismic sequence. The cross-sections are extrapolated down to a depth of ca. 12 km, along which we have plotted relocated seismicity. Combined geological and seismological data support a new 3D seismotectonic model, illustrating the propagation through time and space of the seismic ruptures during the sequence. Our results show that the litho-mechanical stratigraphy exerted a primary control on the distribution of seismicity, as it is mostly hosted in the more competent lithologies (i.e. the Late Triassic-Paleogene succession, consisting of carbonates and evaporites). In addition, we illustrate the crucial role played by the inherited compressional structures in determining the lateral and vertical variations of the rheological properties of the upper crust and, eventually, the overall geometry and segmentation of the seismogenic extensional system. The workflow proposed here can be applied to other seismogenic zones throughout the world, since reliable seismotectonic models require an accurate reconstruction of the subsurface geological setting, based on a close integration of geological, geophysical and seismological data

    Synthesis of protein conjugates adsorbed on cationic liposomes surface

    Get PDF
    The well-known Toll like receptor 9 (TLR9) agonist CpG ODN has shown promising results as vaccine adjuvant in preclinical and clinical studies, however its in vivo stability and potential systemic toxicity remain a concern. In an effort to overcome these issues, different strategies have been explored including conjugation of CpG ODN with proteins or encapsulation/adsorption of CpG ODN into/onto liposomes. Although these methods have resulted in enhanced immunopotency compared to co-administration of free CpG ODN and antigen, we believe that this effect could be further improved. Here, we designed a novel delivery system of CpG ODN based on its conjugation to serve as anchor for liposomes. Thiol-maleimide chemistry was utilised to covalently ligate model protein with the CpG ODN TLR9 agonist. Due to its negative charge, the protein conjugate readily electrostatically bound cationic liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide (DDA) in a very high degree. The novel cationic liposomes-protein conjugate complex shared similar vesicle characteristics (size and charge) compared to free liposomes. The conjugation of CpG ODN to protein in conjunction with adsorption on cationic liposomes, could promote co-delivery leading to the induction of immune response at low antigen and CpG ODN doses. • The CpG ODN Toll-like receptor (TLR) 9 agonist was conjugated to protein antigens via thiol-maleimide chemistry. • Due to their negative charge, protein conjugates readily electrostatically bound cationic liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide (DDA) resulting to the design of novel cationic liposomes-protein conjugate complexes. • The method is suited for the liposomal delivery of a variety of adjuvant-protein conjugates

    A lattice-theoretical perspective on adhesive categories

    Get PDF
    It is a known fact that the subobjects of an object in an adhesive category form a distributive lattice. Building on this observation, in the paper we show how the representation theorem for finite distributive lattices applies to subobject lattices. In particular, we introduce a notion of irreducible object in an adhesive category, and we prove that any finite object of an adhesive category can be obtained as the colimit of its irreducible subobjects. Furthermore we show that every arrow between finite objects in an adhesive category can be interpreted as a lattice homomorphism between subobject lattices and, conversely, we characterize those homomorphisms between subobject lattices which can be seen as arrows

    Design of a novel vaccine nanotechnology-based delivery system comprising CpGODN-protein conjugate anchored to liposomes

    Get PDF
    Although the well-known Toll like receptor 9 (TLR9) agonist CpGODN has shown promising results as vaccine adjuvant in preclinical and clinical studies, its in vivo stability and potential systemic toxicity remain a concern. In an effort to circumvent these issues, different strategies have been employed to increase its stability, localise action and reduce dosage. These include conjugation of CpGODN with proteins or encapsulation/adsorption of CpGODN into/onto liposomes, and have resulted in enhanced immunopotency compared to co-administration of free CpGODN and antigen. Here, we designed a novel delivery system of CpGODN based on its conjugation to serve as anchor for liposomes. Thiol-maleimide chemistry was utilised to covalently ligate the Group B Streptococcus (GBS) GBS67 protein antigen with the CpGODN TLR9 agonist. This treatment did not alter protein's ability to be recognised by specific antibodies or the CpGODN to function as a TLR9 agonist. Due to its negative charge, the protein conjugate readily electrostatically bound cationic liposomes composed of 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide (DDA). The novel cationic liposomes-protein conjugate complex (GBS67-CpGODN+L) shared similar vesicle characteristics (size and charge) compared to free liposomes but exhibited different structure and morphology. Following intramuscular immunisation, GBS67-CpGODN+L formed a vaccine depot at the injection site and induced a remarkable increase of functional immune responses against GBS compared to the simple co-administration of GBS67, CpGODN and liposomes. This work demonstrates that the conjugation of CpGODN to GBS67 in conjunction with adsorption on cationic liposomes, can promote co-delivery leading to the induction of a multifaceted immune response at low antigen and CpGODN doses. Our findings highlight the potential for harnessing the immunostimulatory properties of different adjuvants to develop more effective nanostructure-based vaccine platforms

    Prevalence of Spinal Muscular Atrophy in the Era of Disease-Modifying Therapies: An Italian Nationwide Survey

    Get PDF
    Objective: Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene. The aim of this study was to assess the prevalence of SMA and treatment prescription in Italy. Methods: An online survey was distributed to 36 centers identified by the Italian government as referral centers for SMA. Data on the number of patients with SMA subdivided according to age, type, SMN2 copy number, and treatment were collected. Results: One thousand two hundred fifty-five patients with SMA are currently followed in the Italian centers with an estimated prevalence of 2.12/100,000. Of the 1,255, 284 were type I, 470 type II, 467 type III, and 15 type IV with estimated prevalence of 0.48, 0.79, 0.79 and 0.02/100,000, respectively. Three patients with SMA 0 and 16 presymptomatic patients were also included. Approximately 85% were receiving one of the available treatments. The percentage of treated patients decreased with decreasing severity (SMA I: 95.77%, SMA II: 85.11%, SMA III: 79.01%). Discussion: The results provide for the first time an estimate of the prevalence of SMA at the national level and the current distribution of patients treated with the available therapeutical options. These data provide a baseline to assess future changes in relation to the evolving therapeutical scenario

    Consensus statement of the Italian society of pediatric allergy and immunology for the pragmatic management of children and adolescents with allergic or immunological diseases during the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic has surprised the entire population. The world has had to face an unprecedented pandemic. Only, Spanish flu had similar disastrous consequences. As a result, drastic measures (lockdown) have been adopted worldwide. Healthcare service has been overwhelmed by the extraordinary influx of patients, often requiring high intensity of care. Mortality has been associated with severe comorbidities, including chronic diseases. Patients with frailty were, therefore, the victim of the SARS-COV-2 infection. Allergy and asthma are the most prevalent chronic disorders in children and adolescents, so they need careful attention and, if necessary, an adaptation of their regular treatment plans. Fortunately, at present, young people are less suffering from COVID-19, both as incidence and severity. However, any age, including infancy, could be affected by the pandemic. Based on this background, the Italian Society of Pediatric Allergy and Immunology has felt it necessary to provide a Consensus Statement. This expert panel consensus document offers a rationale to help guide decision-making in the management of children and adolescents with allergic or immunologic diseases
    corecore