12 research outputs found

    Improving the transfer of coastal scientific knowledge : from concept to implementation

    Get PDF
    Tese de doutoramento, Geologia (Geodinâmica), Universidade de Lisboa, Faculdade de Ciências, 2016Achieving coastal sustainability requires a comprehensive knowledge of the coastal environment. In this context, scientific knowledge plays a major role in understanding coastal processes at a wide range of spatial and temporal scales, as well as in the integration of different types of knowledge. However, scientific knowledge as not been used in full for the development of science-based coastal policies and management strategies, and ineffective scientific knowledge transfer arises as a major obstacle in knowledge integration. Several reasons for ineffective knowledge transfer have been suggested in the literature, most of which related with communication gaps. The main objective of the present work is to find means to improve the transfer of coastal scientific knowledge fostering its incorporation into coastal management. This study was based upon a conceptual approach supported in a comprehensive literature review and grounded in theoretical developments. Results benefits from the author’s experience gathered from different projects developed under the framework of the resent study. The first step to achieve the main objective of this work was to identify who are the key coastal actors and understanding the way they interact: this is of paramount importance in a knowledge-transferring framework as they are the audience that scientists aim to reach. Beside scientists, two other key coastal actors are policy-makers and managers, and society. Policy-makers and managers are responsible for the regulation of the coastal zone uses by establishing and implementing the policy framework for the coast. Society arises also as a key coastal actor as people benefit from the services provided by the coastal environment. Although society is frequently regarded as a passive intervenient, the fact is that the role of society in the definition of coastal strategies is increasing. Key coastal actors, their roles and links are schematized in The Coastal Knowledge Triangle. The second step was to identify the challenges faced by scientists in fostering scientific knowledge. Two major challenges were identified: the need to foster engagement among coastal actors, and the need to properly frame the message to be delivered. Engagement is grounded on empathy and goes beyond simple awareness of the problem. Four key enablers for successfully building engagement were identified: willingness, trust, competence and commitment. Framing the message helps turning scientific data into meaningful information for the target audience, and implies choosing the more adequate language (i.e., the manner in which scientific knowledge is traduced) and channels of communication (i.e., the manner in which the message is sent) according to the audience’s specificities. Interpersonal communication, video and websites are examples of widely used channels in science communication. The most adequate languages to traduce scientific knowledge are discourse (i.e., conceptual generalization of conversation), images (including photographs and graphical representations) and indicators. This study suggests that indicators the most efficient way to transmit inherently complex information in a simplified and applicable form, a conclusion in line with several international organizations. Considering their relevance, a common framework for the establishment of coastal geoindicators for sandy coast environments was developed in the scope of the present work. The third step was to identify mechanisms that scientists can adopt to connect with their audience. Each mechanism accounts for the audience specificities and conveys the message in a different way leading to different types and quantity of feedback. If adequately used, mechanisms improve the transfer of scientific knowledge by fostering engagement, minimizing framing effort and optimizing audiences’ feedback. The most widely known (and adopted) mechanism to transfer scientific knowledge is outreach (as formal education is not encompassed in the scope of this work). However, scientists’ must be aware that other mechanisms are available: crowdsourcing, managers-oriented tools and co-production. These mechanisms although in earlier stages of development are promising alternatives and should be considered as major opportunities to foster knowledge transfer. In the scope of the present work, a conceptual model was developed to help scientists in selecting the most adequate mechanism to convey the coastal message. In this selection, scientists must weigh the level of engagement of the audience and account for the feedback raised by each mechanism: outreach leads to coastal awareness; crowdsourcing to data generation; management-oriented tools generate information, and co-production boosts knowledge. The application of each mechanism and related feedback is thoroughly discussed in this work grounded in real-world applications. The adequate use of these mechanisms will lead to a knowledge-based society and will increase the participation of key coastal actors in decision-making. Therefore, scientists should actively pursue the goal of transferring their knowledge outside of the scientific community, by adopting the proper mechanisms to connect with their audience, developing their framing skills and acknowledging the benefits of engaging with others. Not only this is a social responsibility of scientists but, ultimately, it will also benefit the value of research endeavors towards [coastal] sustainability.A sustentabilidade da zona costeira só é possível através da integração do conhecimento (lato sensu) na definição de estratégias de planeamento e gestão. Neste contexto, o conhecimento científico apresenta uma importância fundamental na compreensão dos processos que condicionam a evolução costeira, mas também na integração de outras fontes de conhecimento (não científico) associados à zona costeira. No entanto, presentemente, a integração do conhecimento científico na gestão da zona costeira é geralmente efetuada de forma não-sistemática e, na maioria dos casos, em contextos reativos. Esta situação deve-se essencialmente a constrangimentos associados à transferência do conhecimento científico entre as comunidades científicas e não científicas, relacionados com limitações na comunicação entre as partes. O principal objectivo deste trabalho é definir estratégias que potenciem a transferência do conhecimento científico, entre as comunidades científica e não científica, promovendo a sua integração no planeamento e gestão da zona costeira. Este trabalho é baseado numa abordagem conceptual suportada em vasta pesquisa bibliográfica e no desenvolvimento de um conjunto de projetos que foram desenvolvidos e implementados no âmbito deste estudo. A primeira fase deste trabalho consistiu na identificação dos principais atores da zona costeira. Para além dos cientistas, responsáveis pela geração do conhecimento científico, foram identificados os decisores políticos e gestores, e a sociedade em geral: os decisores políticos e gestores enquanto responsáveis pela regulação da zona costeira através do estabelecimento e implementação dos instrumentos legais de ordenamento da orla costeira; a sociedade uma vez que beneficia, direta e indiretamente, dos serviços fornecidos pela zona costeira e pelo ao seu papel cada vez mais interventivo e de maior relevância na tomada de decisão. De forma a conceptualizar as relações entre os principais atores da zona costeira foi desenvolvido o “Triângulo do Conhecimento Costeiro” (The Coastal Knowledge Triangle). A segunda fase constituiu na identificação dos desafios que os cientistas encontram na transferência do conhecimento científico. Neste contexto foram identificadas duas ações que podem atuar como catalisadores da transferência do conhecimento: promover o engajamento (engagement) entre os principais atores e enquadrar (framing) a “mensagem” num formato que considere as especificidades da audiência. O engajamento implica o envolvimento dos cientistas não só na identificação do problema mas também na sua resolução e beneficia da existência de (maior empatia entre as diferentes partes envolvidas. O enquadramento da mensagem implica a tradução e disponibilização do conhecimento científico em dados e informação relevante para os outros atores (receptores da mensagem) através da utilização de uma linguagem (forma como a informação é traduzida) e de canais de comunicação adequados. No âmbito do presente trabalho, foram identificadas com linguagens mais adequadas para a transferência do conhecimento científico, o discurso, as imagens (incluindo fotografias e gráficos) e os indicadores. Os indicadores foram considerados como a linguagem mais adequada para transmitir informação inerentemente complexa de uma forma simples e aplicável. Esta constatação está de acordo com as orientações de várias organizações internacionais de reconhecido mérito. Neste sentido, no âmbito do presente trabalho foi desenvolvido um quadro de referência para o estabelecimento e reporte de geoindicadores orientados para a descrição do estado e evolução de litorais arenosos. Por último foram identificados diferentes mecanismos para os cientistas se relacionarem com a audiência e que têm como objetivo potenciar a transferência do conhecimento. Cada um dos mecanismos pressupõe o estabelecimento de diferentes tipos de ligação com a audiência gerando, por sua vez, diferentes tipos de resposta. Adicionalmente, se devidamente utilizados, estes mecanismos não só promovem a transferência do conhecimento mas também promovem o engajamento, minimizam os esforços no enquadramento da mensagem e otimizam a resposta da audiência. O mais conhecido, e utilizado, mecanismo de transferência do conhecimento científico é a divulgação científica (outreach). No entanto, existem outras formas para transferir conhecimento científico: a aquisição coletiva de dados (crowdsourcing), ferramentas de apoio à gestão e co-produção. Estes mecanismos, apesar de se encontrarem numa fase mais inicial de desenvolvimento e aplicação, constituem alternativas de elevado potencial na transferência do conhecimento. Neste estudo, todos estes mecanismos são apresentados e discutidos com base em projetos concretos desenvolvidos no âmbito deste trabalho. Para orientar os cientistas na seleção do mecanismo mais adequado para transferirem a sua mensagem foi desenvolvido um modelo conceptual. Nesta seleção, os cientistas devem considerar o nível de engajamento entre os atores e o tipo de resposta que os cientistas desejam gerar na audiência: enquanto a divulgação científica promove a literacia e a sensibilização, a aquisição coletiva de dados promove a geração de dados, as ferramentas orientadas para o apoio à gestão promovem a geração de informação e a coprodução a geração de (novo) conhecimento. Verificou-se que a adoção dos diferentes os mecanismos tem um vasto potencial na promoção uma sociedade baseada no conhecimento e potencia a participação dos diferentes atores costeiros no processo de decisão. Neste sentido, os cientistas devem promover ativamente a transferência do conhecimento científico para além das fronteiras da comunidade científica. É ainda fundamental que os cientistas desenvolvam as suas competências no enquadramento da mensagem e reconheçam os benefícios de interagir com os outros atores. Esta atitude é uma responsabilidade social dos cientistas que, em última instância, irá valorizar os seus esforços na geração do conhecimento científico e contribuir para a sustentabilidade da zona costeira.Fundação para a ciência e a Tecnologia (FCT, SFRH/BD/82223/2011

    Morfodinâmica do vértice noroeste da península de Tróia (Portugal)

    Get PDF
    Dissertação de mestrado, Estudos marinhos e costeiros, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2005O objectivo do presente estudo foi interpretar a morfodinâmica do vértice Noroeste da península de Tróia, quantificando o seu comportamento a diferentes escalas temporais - sazonal e diária - e integrando os mecanismos condicionadores dessa dinâmica - os agentes meteorológicos e oceânicos.The objective of this research was the study of beach morphodynamic and coastal dynamic forcing factors of the northern tip of the Tróia península, at seasonal and daily scales

    EMSO ERIC: A challenging infrastructure to monitor Essential Ocean Variables (EOVs) across European Seas

    Get PDF
    The European Multidisciplinary Seafoor and water Column Observatory (EMSO, www.emso.eu) is a distributed research infrastructure (RI), composed of fxed-point deep-sea observatories and shallow water test sites at strategic environmental locations from the southern entrance of the Arctic Ocean all the way through the North Atlantic through the Mediterranean to the Black Sea. Working as a single powerful system, it is a valuable new tool for researchers and engineers looking for long time series of high-quality and high-resolution data to study and continuously monitor complex processes interactions among the geosphere, biosphere, hydrosphere and atmosphere, as well as to test, validate and demonstrate new marine technologies.Peer Reviewe

    EMSO ERIC: A challenging infrastructure to monitor Essential Ocean Variables (EOVs) across European Seas

    Get PDF
    Special issue 9th MARTECH: International Workshop on Marine Technology: 16-18 June 2021, Vigo, Spain.-- 2 pages, 1 figureThe European Multidisciplinary Seafoor and water Column Observatory (EMSO, www.emso.eu) is a distributed research infrastructure (RI), composed of fxed-point deep-sea observatories and shallow water test sites at strategic environmental locations from the southern entrance of the Arctic Ocean all the way through the North Atlantic through the Mediterranean to the Black Sea. Working as a single powerful system, it is a valuable new tool for researchers and engineers looking for long time series of high-quality and high-resolution data to study and continuously monitor complex processes interactions among the geosphere, biosphere, hydrosphere and atmosphere, as well as to test, validate and demonstrate new marine technologiesPeer reviewe

    MAMMALS IN PORTUGAL : A data set of terrestrial, volant, and marine mammal occurrences in P ortugal

    Get PDF
    Mammals are threatened worldwide, with 26% of all species being includedin the IUCN threatened categories. This overall pattern is primarily associatedwith habitat loss or degradation, and human persecution for terrestrial mam-mals, and pollution, open net fishing, climate change, and prey depletion formarine mammals. Mammals play a key role in maintaining ecosystems func-tionality and resilience, and therefore information on their distribution is cru-cial to delineate and support conservation actions. MAMMALS INPORTUGAL is a publicly available data set compiling unpublishedgeoreferenced occurrence records of 92 terrestrial, volant, and marine mam-mals in mainland Portugal and archipelagos of the Azores and Madeira thatincludes 105,026 data entries between 1873 and 2021 (72% of the data occur-ring in 2000 and 2021). The methods used to collect the data were: live obser-vations/captures (43%), sign surveys (35%), camera trapping (16%),bioacoustics surveys (4%) and radiotracking, and inquiries that represent lessthan 1% of the records. The data set includes 13 types of records: (1) burrowsjsoil moundsjtunnel, (2) capture, (3) colony, (4) dead animaljhairjskullsjjaws, (5) genetic confirmation, (6) inquiries, (7) observation of live animal (8),observation in shelters, (9) photo trappingjvideo, (10) predators dietjpelletsjpine cones/nuts, (11) scatjtrackjditch, (12) telemetry and (13) vocalizationjecholocation. The spatial uncertainty of most records ranges between 0 and100 m (76%). Rodentia (n=31,573) has the highest number of records followedby Chiroptera (n=18,857), Carnivora (n=18,594), Lagomorpha (n=17,496),Cetartiodactyla (n=11,568) and Eulipotyphla (n=7008). The data setincludes records of species classified by the IUCN as threatened(e.g.,Oryctolagus cuniculus[n=12,159],Monachus monachus[n=1,512],andLynx pardinus[n=197]). We believe that this data set may stimulate thepublication of other European countries data sets that would certainly contrib-ute to ecology and conservation-related research, and therefore assisting onthe development of more accurate and tailored conservation managementstrategies for each species. There are no copyright restrictions; please cite thisdata paper when the data are used in publications.info:eu-repo/semantics/publishedVersio

    Mammals in Portugal: a data set of terrestrial, volant, and marine mammal occurrences in Portugal

    Get PDF
    Mammals are threatened worldwide, with ~26% of all species being included in the IUCN threatened categories. This overall pattern is primarily associated with habitat loss or degradation, and human persecution for terrestrial mammals, and pollution, open net fishing, climate change, and prey depletion for marine mammals. Mammals play a key role in maintaining ecosystems functionality and resilience, and therefore information on their distribution is crucial to delineate and support conservation actions. MAMMALS IN PORTUGAL is a publicly available data set compiling unpublished georeferenced occurrence records of 92 terrestrial, volant, and marine mammals in mainland Portugal and archipelagos of the Azores and Madeira that includes 105,026 data entries between 1873 and 2021 (72% of the data occurring in 2000 and 2021). The methods used to collect the data were: live observations/captures (43%), sign surveys (35%), camera trapping (16%), bioacoustics surveys (4%) and radiotracking, and inquiries that represent less than 1% of the records. The data set includes 13 types of records: (1) burrows | soil mounds | tunnel, (2) capture, (3) colony, (4) dead animal | hair | skulls | jaws, (5) genetic confirmation, (6) inquiries, (7) observation of live animal (8), observation in shelters, (9) photo trapping | video, (10) predators diet | pellets | pine cones/nuts, (11) scat | track | ditch, (12) telemetry and (13) vocalization | echolocation. The spatial uncertainty of most records ranges between 0 and 100 m (76%). Rodentia (n =31,573) has the highest number of records followed by Chiroptera (n = 18,857), Carnivora (n = 18,594), Lagomorpha (n = 17,496), Cetartiodactyla (n = 11,568) and Eulipotyphla (n = 7008). The data set includes records of species classified by the IUCN as threatened (e.g., Oryctolagus cuniculus [n = 12,159], Monachus monachus [n = 1,512], and Lynx pardinus [n = 197]). We believe that this data set may stimulate the publication of other European countries data sets that would certainly contribute to ecology and conservation-related research, and therefore assisting on the development of more accurate and tailored conservation management strategies for each species. There are no copyright restrictions; please cite this data paper when the data are used in publications

    EMSO ERIC, L'INFRASTRUCTURE PANEUROPÉENNE D'OBSERVATOIRES DES FONDS MARINS ET DE LA COLONNE D'EAU AUTOUR DES MERS EUROPÉENNES, ÉTEND SA COUVERTURE À L'ARCTIQUE

    No full text
    International audienceEMSO is a distributed Research Infrastructure currently comprising nine Regional Facilities (RFs) and three shallow water test sites, strategically located all the way from the southern entrance of the Arctic Ocean across to the North Atlantic through the Mediterranean to the Black Sea. Since the beginning of 2021 Norway has been integrated as a new EMSO ERIC member, extending the geographical coverage to the Nordic Sea and the Arctic. EMSO’s extension will benefi t from an experienced team managing moored observatories, ocean gliders and the Mohn Ridge Seafl oor and Water Column Observatory

    EMSO-ERIC, the Pan-European Infrastructure of Seafloor and Water-Column Observatories Around the European Seas, Extends its Coverage to the Arctic

    No full text
    EMSO is a distributed Research Infrastructure currently comprising nine Regional Facilities (RFs) and three shallow water test sites, strategically located all the way from the southern entrance of the Arctic Ocean across to the North Atlantic through the Mediterranean to the Black Sea. Since the beginning of 2021 Norway has been integrated as a new EMSO ERIC member, extending the geographical coverage to the Nordic Sea and the Arctic. EMSO’s extension will benefit from an experienced team managing moored observatories, ocean gliders and the Mohn Ridge Seafloor and Water Column Observatory

    EMSO ERIC, L'INFRASTRUCTURE PANEUROPÉENNE D'OBSERVATOIRES DES FONDS MARINS ET DE LA COLONNE D'EAU AUTOUR DES MERS EUROPÉENNES, ÉTEND SA COUVERTURE À L'ARCTIQUE

    No full text
    International audienceEMSO is a distributed Research Infrastructure currently comprising nine Regional Facilities (RFs) and three shallow water test sites, strategically located all the way from the southern entrance of the Arctic Ocean across to the North Atlantic through the Mediterranean to the Black Sea. Since the beginning of 2021 Norway has been integrated as a new EMSO ERIC member, extending the geographical coverage to the Nordic Sea and the Arctic. EMSO’s extension will benefi t from an experienced team managing moored observatories, ocean gliders and the Mohn Ridge Seafl oor and Water Column Observatory
    corecore