24 research outputs found

    Measurements of the νμ\nu_{\mu} and νˉμ\bar{\nu}_{\mu}-induced Coherent Charged Pion Production Cross Sections on 12C^{12}C by the T2K experiment

    Get PDF
    We report an updated measurement of the νμ\nu_{\mu}-induced, and the first measurement of the νˉμ\bar{\nu}_{\mu}-induced coherent charged pion production cross section on 12C^{12}C nuclei in the T2K experiment. This is measured in a restricted region of the final-state phase space for which pμ,π>0.2p_{\mu,\pi} > 0.2 GeV, cos(θμ)>0.8\cos(\theta_{\mu}) > 0.8 and cos(θπ)>0.6\cos(\theta_{\pi}) > 0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured νμ\nu_{\mu} CC coherent pion production flux-averaged cross section on 12C^{12}C is (2.98±0.37(stat.)±0.31(syst.)+0.490.00(Q2model))×1040 cm2(2.98 \pm 0.37 (stat.) \pm 0.31 (syst.) \substack{ +0.49 \\ -0.00 } \mathrm{ (Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The new measurement of the νˉμ\bar{\nu}_{\mu}-induced cross section on 12C^{12}{C} is (3.05±0.71(stat.)±0.39(syst.)+0.740.00(Q2model))×1040 cm2(3.05 \pm 0.71 (stat.) \pm 0.39 (syst.) \substack{ +0.74 \\ -0.00 } \mathrm{(Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Measurements of the νμ and ν¯μ -induced coherent charged pion production cross sections on C12 by the T2K experiment

    Get PDF
    We report an updated measurement of the ν μ -induced, and the first measurement of the ¯ ν μ -induced coherent charged pion production cross section on 12 C nuclei in the Tokai-to-Kamioka experiment. This is measured in a restricted region of the final-state phase space for which p μ , π > 0.2     GeV , cos ( θ μ ) > 0.8 and cos ( θ π ) > 0.6 , and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured ν μ charged current coherent pion production flux-averaged cross section on 12 C is ( 2.98 ± 0.37 ( stat ) ± 0.31 ( syst ) + 0.49 − 0.00 ( Q 2   model ) ) × 10 − 40     cm 2 . The new measurement of the ¯ ν μ -induced cross section on 12 C is ( 3.05 ± 0.71 ( stat ) ± 0.39 ( syst ) + 0.74 − 0.00 ( Q 2   model ) ) × 10 − 40     cm 2 . The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Measurements of the νμ and ν ¯ μ -induced coherent charged pion production cross sections on C 12 by the T2K experiment

    No full text
    We report an updated measurement of the νμ-induced, and the first measurement of the ν¯μ-induced coherent charged pion production cross section on C12 nuclei in the Tokai-to-Kamioka experiment. This is measured in a restricted region of the final-state phase space for which pμ,π&gt;0.2 GeV, cos(θμ)&gt;0.8 and cos(θπ)&gt;0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured νμ charged current coherent pion production flux-averaged cross section on C12 is (2.98±0.37(stat)±0.31(syst)-0.00+0.49(Q2 model))×10-40 cm2. The new measurement of the ν¯μ-induced cross section on C12 is (3.05±0.71(stat)±0.39(syst)-0.00+0.74(Q2 model))×10-40 cm2. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions.</p

    First measurement of muon neutrino charged-current interactions on hydrocarbon without pions in the final state using multiple detectors with correlated energy spectra at T2K

    No full text
    This paper reports the first measurement of muon neutrino charged-current interactions without pions in the final state using multiple detectors with correlated energy spectra at T2K. The data was collected on hydrocarbon targets using the off-axis T2K near detector (ND280) and the on-axis T2K near detector (INGRID) with neutrino energy spectra peaked at 0.6 GeV and 1.1 GeV, respectively. The correlated neutrino flux presents an opportunity to reduce the impact of the flux uncertainty and to study the energy dependence of neutrino interactions. The extracted double-differential cross sections are compared to several Monte Carlo neutrino-nucleus interaction event generators showing the agreement between both detectors individually and with the correlated result.</p

    First measurement of muon neutrino charged-current interactions on hydrocarbon without pions in the final state using multiple detectors with correlated energy spectra at T2K

    No full text
    Updated discussion in Sec. V-A; Updated author listThis paper reports the first measurement of muon neutrino charged-current interactions without pions in the final state using multiple detectors with correlated energy spectra at T2K. The data was collected on hydrocarbon targets using the off-axis T2K near detector (ND280) and the on-axis T2K near detector (INGRID) with neutrino energy spectra peaked at 0.6 GeV and 1.1 GeV respectively. The correlated neutrino flux presents an opportunity to reduce the impact of the flux uncertainty and to study the energy dependence of neutrino interactions. The extracted double-differential cross sections are compared to several Monte Carlo neutrino-nucleus interaction event generators showing the agreement between both detectors individually and with the correlated result

    First measurement of muon neutrino charged-current interactions on hydrocarbon without pions in the final state using multiple detectors with correlated energy spectra at T2K

    No full text
    Updated discussion in Sec. V-A; Updated author listThis paper reports the first measurement of muon neutrino charged-current interactions without pions in the final state using multiple detectors with correlated energy spectra at T2K. The data was collected on hydrocarbon targets using the off-axis T2K near detector (ND280) and the on-axis T2K near detector (INGRID) with neutrino energy spectra peaked at 0.6 GeV and 1.1 GeV respectively. The correlated neutrino flux presents an opportunity to reduce the impact of the flux uncertainty and to study the energy dependence of neutrino interactions. The extracted double-differential cross sections are compared to several Monte Carlo neutrino-nucleus interaction event generators showing the agreement between both detectors individually and with the correlated result

    First measurement of muon neutrino charged-current interactions on hydrocarbon without pions in the final state using multiple detectors with correlated energy spectra at T2K

    Get PDF
    Updated discussion in Sec. V-A; Updated author listThis paper reports the first measurement of muon neutrino charged-current interactions without pions in the final state using multiple detectors with correlated energy spectra at T2K. The data was collected on hydrocarbon targets using the off-axis T2K near detector (ND280) and the on-axis T2K near detector (INGRID) with neutrino energy spectra peaked at 0.6 GeV and 1.1 GeV respectively. The correlated neutrino flux presents an opportunity to reduce the impact of the flux uncertainty and to study the energy dependence of neutrino interactions. The extracted double-differential cross sections are compared to several Monte Carlo neutrino-nucleus interaction event generators showing the agreement between both detectors individually and with the correlated result

    Measurements of the νμ and (ν)over-barμ-induced coherent charged pion production cross sections on 12C by the T2K experiment

    No full text

    Updated T2K measurements of muon neutrino and antineutrino disappearance using 3.6 ×\times 1021^{21} protons on target

    Full text link
    Muon neutrino and antineutrino disappearance probabilities are identical in the standard three-flavor neutrino oscillation framework, but CPT violation and non-standard interactions can violate this symmetry. In this work we report the measurements of sin2θ23\sin^{2} \theta_{23} and Δm322\Delta m_{32}^2 independently for neutrinos and antineutrinos. The aforementioned symmetry violation would manifest as an inconsistency in the neutrino and antineutrino oscillation parameters. The analysis discussed here uses a total of 1.97×\times1021^{21} and 1.63×\times1021^{21} protons on target taken with a neutrino and antineutrino beam respectively, and benefits from improved flux and cross-section models, new near detector samples and more than double the data reducing the overall uncertainty of the result. No significant deviation is observed, consistent with the standard neutrino oscillation picture
    corecore