660 research outputs found

    The hadronic light by light contribution to the (g−2)μ(g-2)_{\mu} with holographic models of QCD

    Get PDF
    We study the anomalous electromagnetic pion form factor Fπ0γ∗γ∗F_{\pi^0\gamma^*\gamma^*} with a set of holographic models. By comparing with the measured value of the linear slope, some of these models can be ruled out. From the remaining models we obtain predictions for the low-energy quadratic slope parameters of Fπ0γ∗γ∗F_{\pi^0\gamma^*\gamma^*}, currently out of experimental reach but testable in the near future. We find it particularly useful to encode this low-energy information in a form factor able to satisfy also QCD short-distance constraints. We choose the form factor introduced by D'Ambrosio, Isidori and Portoles in kaon decays, which has the right short distance for a particular value of the quadratic slope, which is later shown to be compatible with our holographic predictions. We then turn to a determination of the (dominant) pion exchange diagram in the hadronic light by light scattering contribution to the muon anomalous magnetic moment. We quantify the theoretical uncertainty in (g−2)μ(g-2)_{\mu} coming from the different input we use: QCD short distances, experimental input and low-energy holographic predictions. We also test the pion-pole approximation. Our final result is aμπ0=6.54(25)⋅10−10a_{\mu}^{\pi^0}=6.54(25)\cdot 10^{-10}, where the error is driven by the linear slope of Fπ0γ∗γ∗F_{\pi^0\gamma^*\gamma^*}, soon to be measured with precision at KLOE-2. Our numerical analysis also indicates that large values of the magnetic susceptibility χ0\chi_0 are disfavored, therefore pointing at a mild effect from the pion off-shellness. However, in the absence of stronger bounds on χ0\chi_0, an additional (10−15)(10-15)% systematic uncertainty on the previous value for aμπ0a_\mu^{\pi^0} cannot be excluded.Comment: 20 pages, 5 figures. Substantial improvements throughout the text to match the published version. Enhanced discussion of the analysis in Section IV with the addition of two appendices. Conclusions unchange

    Generating Functional for Strong and Nonleptonic Weak Interactions

    Full text link
    The generating functional for Green functions of quark currents is given in closed form to next-to-leading order in the low-energy expansion for chiral SU(3), including one-loop amplitudes with up to three meson propagators. Matrix elements and form factors for strong and nonleptonic weak processes with at most six external states can be extracted from this functional by performing three-dimensional flavour traces. To implement this procedure, a Mathematica program is provided that evaluates amplitudes with at most six external mesons, photons (real or virtual) and virtual W (semileptonic form factors). The program is illustrated with several examples that can be compared with existing calculations.Comment: 26 pages; references added, comparison with other programs added, small changes in the text, version to appear in JHE

    A holographic approach to low-energy weak interactions of hadrons

    Full text link
    We apply the double-trace formalism to incorporate nonleptonic weak interactions of hadrons into holographic models of the strong interactions. We focus our attention upon ΔS=1\Delta S=1 nonleptonic kaon decays. By working with a Yang-Mills--Chern-Simons 5-dimensional action, we explicitly show how, at low energies, one recovers the ΔS=1\Delta S=1 weak chiral Lagrangian for both the anomalous and nonanomalous sectors. We provide definite predictions for the low energy coefficients in terms of the AdS metric and argue that the double-trace formalism is a 5-dimensional avatar of the Weak Deformation Model introduced long ago by Ecker et al. As a significant phenomenological application, we reassess the K→3πK\to 3\pi decays in the light of the holographic model. Previous models found a fine-tuned cancellation of resonance exchange in these decays, which was both conceptually puzzling and quantitatively in disagreement with experimental results. The holographic model we build is an illustrative counterexample showing that the cancellation encountered in the literature is not generic but a model-dependent statement and that agreement with experiment can be obtained.Comment: 20 page

    Vector-meson contributions do not explain the rate and spectrum in K_L -> pi0 gamma gamma

    Full text link
    We analyze the recent NA48 data for the reaction K_L -> pi0 gamma gamma with and without the assumption of vector meson dominance (VMD). We find that the data is well described by a three-parameter expression inspired by O(p^6) chiral perturbation theory. We also find that it is impossible to fit the shape of the decay distribution and the overall rate simultaneously if one imposes the VMD constraints on the three parameters. We comment on the different fits and their implications for the CP-conserving component of the decay K_L -> pi0 e+ e-.Comment: Version accepted for publication on Phys. Rev. D. 19 pages, LaTeX, 8 figures, uses epsf.st

    Role of Scalar Meson Resonances in $K_{L}^{0} \rightarrow \pi^{0} \gamma \gamma Decay

    Full text link
    Corrections to KL0→π0γγK_{L}^{0}\rightarrow \pi^{0} \gamma \gamma decay induced by scalar meson exchange are studied within chiral perturbation theory. In spite of bad knowledge of scalar-mesons parameters, the calculated branching ratio can be changed by a few percent.Comment: 18 pages of text, 2 figures (available upon request); preprint IJS-TP-16-94 , TUM-T31-63-94

    Conormal distributions in the Shubin calculus of pseudodifferential operators

    Get PDF
    We characterize the Schwartz kernels of pseudodifferential operators of Shubin type by means of an FBI transform. Based on this we introduce as a generalization a new class of tempered distributions called Shubin conormal distributions. We study their transformation behavior, normal forms and microlocal properties.Comment: 23 page
    • …
    corecore