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We characterize the Schwartz kernels of pseudodifferential operators of Shubin type
by means of a Fourier-Bros-Iagolnitzer transform. Based on this, we introduce as a
generalization a new class of tempered distributions called Shubin conormal dis-
tributions. We study their transformation behavior, normal forms, and microlocal
properties. Published by AIP Publishing. https://doi.org/10.1063/1.5022778

I. INTRODUCTION

The theory of pseudodifferential operators has proven to be a powerful tool in many disciplines
of mathematics. The space of conormal distributions was designed to contain the Schwartz kernels of
pseudodifferential operators with Hörmander symbols, see Ref. 6, Chap. 18.2. Conormal distributions
are the starting point for the theory of Lagrangian distributions and Fourier integral operators (Ref. 6,
Chap. 25), but it has also been studied in itself to a great extent, and it is essential in several theories,
see, e.g., Refs. 1 and 10. A distribution u defined on a smooth manifold is conormal with respect to
a closed smooth submanifold if Lu belongs to a certain Besov space locally for certain differential
operators L that depend on the submanifold.

For the well-studied pseudodifferential operators onRd with Shubin symbols,17 we are not aware
of a concept corresponding to conormal distributions. In this paper, we fill this gap by introducing a
theory of conormal distributions with respect to linear subspaces of Rd , adapted to Shubin operators.
Recall that a Shubin symbol a ∈ Γm

ρ of order m ∈R satisfies the estimates

|∂αx ∂
β
ξ a(x, ξ)| . (1 + |x | + |ξ |)m−ρ |α+β | , (x, ξ) ∈Rd × Rd , α, β ∈Nd ,

where 0 6 ρ 6 1.
The key feature of the Shubin symbols that is difficult to describe by the standard techniques is

the inherent isotropy, in particular that taking derivatives with respect to x increases the decay in ξ.
The tool that we employ to circumvent this issue is a version of the short-time Fourier transform,
which is more suitable to isotropic symbols than the standard Fourier transform on which the classical
theory is based.

Our work may be seen as phase space analysis of Shubin conormality. We extend Tataru’s
characterization18 of the Schwartz kernels of pseudodifferential operators with m = ρ = 0 to
0 6 ρ 6 1 and order m ∈R. The behavior of the symbols with respect to derivatives and the order is
reflected in phase space.

Based on the characterization of the Schwartz kernels of Shubin operators, we define conormal
tempered distributions on Rd with respect to a linear subspace and an order m ∈R. To distinguish
them from Hörmander’s notion of conormal distribution, we use the prefix Γ-conormal. The Schwartz
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kernels of Shubin operators are thus identical to the Γ-conormal distributions on R2d with respect to
the diagonal in R2d .

We prove functional properties of Γ-conormal distributions and check that they transform well
under the Fourier transform and linear coordinate transformations. We equip them with a topology
such that these operators become continuous. The present paper can be seen as a first step in the
direction of a phase space analysis for Lagrangian distributions in the Shubin calculus which, as far
as we know, does not yet exist. This will be the subject of a forthcoming paper.

The paper is organized as follows: In Sec. II, we introduce the integral transform on which our
analysis is based and state its basic properties. Section III contains a phase space characterization of
Shubin symbols in terms of the integral transform. In Sec. IV, we transfer the characterization to the
Schwartz kernels of the associated class of global pseudodifferential operators. Along the way, we
give a simple proof of the continuity of these operators on the associated scale of Shubin–Sobolev
modulation spaces. Finally in Sec. V, we define Γ-conormal distributions and discuss their functional
and microlocal properties.

II. AN INTEGRAL TRANSFORM OF FBI TYPE

In this section, we introduce the tool for the definition of Shubin conormal distributions, namely,
a variant of the Fourier-Bros-Iagolnitzer (FBI) transform, and discuss its main properties. First, we
fix some notation.

Basic notation. We use S (Rd) and S ′(Rd) for the Schwartz space of rapidly decaying smooth
functions and its dual, the tempered distributions. We write 〈u, v〉 for the bilinear pairing between
a test function v and a distribution u and (u, v)= 〈u, v〉 for the sesquilinear pairing as well as the L2

scalar product if u, v ∈ L2(Rd).
We use T yu(x) = u(x � y) and Mξu(x) = ei〈x ,ξ 〉u(x), where 〈·, ·〉 denotes the inner product on Rd ,

for the operation of translation by y ∈Rd and modulation by ξ ∈Rd , respectively, applied to functions
or distributions. For x ∈Rd , we write 〈x〉=

√
1 + |x |2. Peetre’s inequality is

〈x + y〉s 6Cs〈x〉
s〈y〉 |s | x, y ∈Rd , s ∈R, Cs > 0. (2.1)

We write d̄x for the dual Lebesgue measure (2π)�ddx. The notation f (x) . g(x) means that
f (x) 6 Cg(x) for some C > 0, for all x in the domain of f and g. If f (x) . g(x) . f (x), then we
write f (x) � g(x).

The Fourier transform is normalized for f ∈S (Rd) as

Ff (ξ)= f̂ (ξ)= (2π)−d/2
∫
Rd

f (x)e−i〈x,ξ〉 dx,

which makes it unitary on L2(Rd). The partial Fourier transform with respect to a vector variable
indexed by j is denoted Fj. For 1 6 j 6 d, we use Dj = �i∂j and extend to multi-indices.

The orthogonal projection on a linear subspace Y ⊆Rd is πY . We denote by Md1×d2 (R) the space
of d1 × d2 matrices with real entries, by GL(d,R) the group of invertible elements of Md×d(R), and
by O(d) the subgroup of orthogonal matrices in GL(d,R). The real symplectic group4 is denoted
Sp(d,R) and is defined as the matrices in GL(2d,R) that leaves invariant the canonical symplectic
form on T ∗Rd ,

σ((x, ξ), (x′, ξ ′))= 〈x′, ξ〉 − 〈x, ξ ′〉, (x, ξ), (x′, ξ ′) ∈ T ∗Rd .

For a function f on Rd and A ∈GL(d,R), we denote the pullback by A∗f = f ◦ A. The determinant
of A ∈Md×d(R) is |A|, the transpose is At , and the inverse of the transpose is A�t .

An integral transform of FBI type.

Definition 2.1. Let u ∈S ′(Rd) and let g ∈S (Rd)\ {0} be a window function. Then the transform
Tgu :R2d→C is

Tgu(x, ξ)= (2π)−d/2(u, TxMξg), x, ξ ∈Rd . (2.2)
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If u ∈S (Rd), then Tgu ∈S (R2d) (Ref. 5, Theorem 11.2.5). The adjoint T ∗g is (T ∗g U, f )

= (U, Tgf ) for U ∈S ′(R2d) and f ∈S (Rd). When U is a polynomially bounded measurable function,
we write

T ∗g U(y)= (2π)−d/2
∫
R2d

U(x, ξ) TxMξg(y) dx dξ,

where the integral is defined weakly so that (T ∗g U, f )= (U, Tgf )L2 for f ∈S (Rd).

Remark 2.2. For u ∈S (Rd), we have

Tgu(x, ξ)= (2π)−d/2
∫
Rd

u(y) e−i〈y−x,ξ〉 g(y − x) dy= ei〈x,ξ〉F(u Txg)(ξ).

The standard, L2-normalized Gaussian window function on Rd is denoted ψ0(x)= π−d/4e−|x |
2/2.

Proposition 2.3 (Ref. 5, Theorem 11.2.3). Let u ∈S ′(Rd) and g ∈S (Rd) \ 0. Then
Tgu ∈C∞(R2d) and there exists N ∈N that does not depend on g such that

|Tgu(x, ξ)| . 〈(x, ξ)〉N , (x, ξ) ∈R2d . (2.3)

We have u ∈S (Rd) if and only if for any N ∈N,

|Tgu(x, ξ)| . 〈(x, ξ)〉−N , (x, ξ) ∈R2d . (2.4)

Remark 2.4 (Relation to other integral transforms.) The transform Tg is related to the short-time
Fourier transform (cf. Ref. 5)

Vgu(x, ξ)= (2π)−d/2(u, MξTxg), x, ξ ∈Rd

(for the Gaussian window g = ψ0 also known as the Gabor transform) via

Tgu(x, ξ)= ei〈x,ξ〉Vgu(x, ξ).

For the standard Gaussian window, (2.2) may be expressed as

Tψ0 u(x, ξ)= (2π)−d/2e−
|ξ |2

2 (u ∗ ψ0)(x − iξ)=Bu(x − iξ) e−( |x |2+ |ξ |2)/2, (2.5)

where B stands for the Bargmann transform.5

We have for two different windows g, h ∈S (Rd),

T ∗h Tgu= (h, g)u, u ∈S ′(Rd), (2.6)

and consequently, ‖g‖−2
L2 T ∗g Tgu= u for g ∈S (Rd) \ 0.5 If (h, g) , 0, the inversion formula (2.6) can

be written as
(u, f )= (h, g)−1(Tgu, Th f ), u ∈S ′(Rd), f ∈S (Rd).

Two important features of Tg which distinguishes it from the short-time Fourier transform are
the following differential identities:

∂αx Tgu(x, ξ)= Tg(∂αu)(x, ξ), α ∈Nd , (2.7)

Dβ
ξTgu(x, ξ)= Tgβu(x, ξ), β ∈Nd , gβ(x)= (−x)βg(x). (2.8)

As described in Ref. 5 for the short time Fourier transform, (2.6) may be used to estimate the
behavior of Tg under a change of window. The following version of this result takes derivatives into
account:

Lemma 2.5. Let u ∈S ′(Rd) and let f , g, h ∈S (Rd) \ 0 satisfy (h, g) , 0. Then for all, α, β ∈Nd

and (x, ξ) ∈R2d ,

|∂αx ∂
β
ξ Tf u(x, ξ)| 6 (2π)−d/2 |(h, g)|−1 |∂αx Tgu| ∗ |Tfβh|(x, ξ). (2.9)
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Proof. We obtain from (2.6)

Tf u= (h, g)−1Tf T ∗h Tgu. (2.10)

We may express Tf T ∗h Tgu as

Tf T ∗h Tgu(x, ξ)= (2π)−d/2(Tgu, Th(TxMξ f ))

= (2π)−d
∫
R2d

Tgu(y, η) (TyMηh, TxMξ f ) dy dη

= (2π)−d/2
∫
R2d

ei〈x−y,η〉Tgu(y, η) Tf h(x − y, ξ − η) dy dη

= (2π)−d/2
∫
R2d

ei〈y,η〉Tgu(x − y, η) Tf h(y, ξ − η) dy dη.

Combining (2.7), (2.8), and (2.10) yields

∂αx Dβ
ξTf u(x, ξ)= (2π)−d/2(h, g)−1

∫
R2d

ei〈x−y,η〉∂αy Tgu(y, η) Tfβh(x − y, ξ − η) dy dη.

Taking absolute value gives (2.9). �

A. Transformation under shifts and symplectic matrices

A pseudodifferential operator in the Weyl quantization is for f ∈S (Rd) defined as

aw(x, D)f (x)=
∫
R2d

ei〈x−y,ξ〉a ((x + y)/2, ξ) f (y) d̄ξ dy, (2.11)

where a is the Weyl symbol. We will later use Shubin symbols, but for now it suffices to note that
the Weyl quantization extends by the Schwartz kernel theorem to a ∈S ′(R2d) and then gives rise to
a continuous linear operator from S (Rd) to S ′(Rd).

The Schwartz kernel of the operator aw(x, D) is

Ka(x, y)=
∫
Rd

ei〈x−y,ξ〉a ((x + y)/2, ξ) d̄ξ (2.12)

interpreted as a partial inverse Fourier transform in S ′(R2d) when a ∈S ′(R2d).
The metaplectic representation4,19 works as follows. To each symplectic matrix χ ∈ Sp(d,R)

is associated an operator µ(χ) that is unitary on L2(Rd) and determined up to a complex factor of
modulus one such that

µ(χ)−1aw(x, D) µ(χ)= (a ◦ χ)w(x, D), a ∈S ′(R2d) (2.13)

(cf. Refs. 4 and 6). The operator µ(χ) is a homeomorphism on S and on S ′.
The metaplectic representation is the mapping Sp(d,R) 3 χ→ µ(χ). It is in fact a representation

of the so-called 2-fold covering group of Sp(d,R), which is called the metaplectic group.
In Table I, we list the generators χ of the symplectic group, the corresponding unitary oper-

ators µ(χ) on u ∈ L2, and the corresponding transformation on Tgu, cf. Ref. 3. We also list the
correspondence for phase shift operators. Here x0, ξ0 ∈Rd , A ∈GL(d,R), B ∈Md×d(R) with B = Bt .

The proofs of the claims in Table I are collected in the following lemmas.

Lemma 2.6. Let u ∈S ′(Rd) and g ∈S (Rd) \ 0. If (x0, ξ0) ∈ T ∗Rd , A ∈GL(d,R), B ∈Md×d(R)
is symmetric, v(x)= e

i
2 〈x,Bx〉u(x), and gB(y)= e−

i
2 〈y,By〉g(y), then for (x, ξ) ∈ T ∗Rd ,

Tg(Tx0 Mξo u)(x, ξ)= ei〈ξ0,x−x0〉Tgu(x − x0, ξ − ξ0),

Tg(|A|1/2A∗u)(x, ξ)= |A|−1/2TA−1∗gu(Ax, A−tξ),

Tgv(x, ξ)= e
i
2 〈x,Bx〉TgB u(x, ξ − Bx).
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TABLE I. The metaplectic representation.

Transformation Action on

(x, ξ) ∈ T∗Rd

u ∈ L2(Rd )

Tgu(x, ξ) ∈ L2(R2d )

(A�1x, Atξ)

Coordinate change |A|1/2A∗u

|A |−1/2TA−1∗gu(Ax, A−tξ)

(ξ , �x)

Rotation π/2 Fu

ei〈x,ξ 〉TF−1gu(−ξ , x)

(x, ξ + Bx)

Shearing e
i
2 〈x,Bx〉u(x)

e
i
2 〈x,Bx〉TgB u(x, ξ − Bx)

(x + x0, ξ + ξ0)

Shift Tx0 Mξ0 u

ei〈ξ0 ,x−x0〉Tgu(x − x0, ξ − ξ0)

Proof. The first and the fourth entry of Table I are immediate consequences of Definition 2.1.
For the third identity, assume first u ∈S (Rd). Then

Tgv(x, ξ)= (2π)−d/2
∫
Rd

g(y − x) e
i
2 〈y,By〉u(y)ei〈x−y,ξ〉 dy

= (2π)−d/2e
i
2 〈x,Bx〉

∫
Rd

g(y − x) e−
i
2 〈y−x,B(y−x)〉u(y)ei〈x−y,ξ−Bx〉 dy

= e
i
2 〈x,Bx〉TgB u(x, ξ − Bx).

The formula extends to u ∈S ′(Rd). �

Finally we prove the claim for “Rotation π/2” in Table I. For later use, we prefer to show a more
general result for a possibly partial Fourier transform.

Lemma 2.7. If u ∈S ′(Rd), 0 6 n 6 d and x = (x1, x2) ∈Rd , x1 ∈Rn, x2 ∈Rd−n, then

Tgu(x1, x2, ξ1, ξ2)= ei〈x2,ξ2〉TF2gF2u(x1, ξ2, ξ1,−x2).

Proof.
ei〈x2,ξ2〉TF2gF2u(x1, ξ2, ξ1,−x2)= ei〈x2,ξ2〉(2π)−d/2(F2u, Tx1,ξ2 Mξ1,−x2F2g)

= ei〈x2,ξ2〉(2π)−d/2(u, F−1
2 Tx1,ξ2 Mξ1,−x2F2g)

= (2π)−d/2(u, Tx1,x2 Mξ1,ξ2 g).

�

Remark 2.8. The extreme cases n = 0 and n = d represent F2 =F (the full Fourier transform)
and the trivial case F2 = I (the identity), respectively.

We observe that up to certain phase factors, changes of windows and sign conventions, the
“Action on Tgu(x, ξ)” reflects the inversion of “Action on T ∗Rd” in Table I.
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III. CHARACTERIZATION OF SHUBIN SYMBOLS

We first recall the definition of Shubin’s class of global symbols for pseudodifferential
operators.17

Definition 3.1. We say that a ∈C∞(Rd) is a Shubin symbol of order m ∈R and parameter
0 6 ρ 6 1, denoted a ∈ Γm

ρ (Rd), if there exist Cα > 0 such that

|∂αa(z)| 6Cα〈z〉
m−ρ |α | , α ∈Nd , z ∈Rd . (3.1)

The space Γm
ρ (Rd) is a Fréchet space equipped with the seminorms ρm

M (a) of best possible constants

Cα in (3.1) maximized over |α| 6 M, M ∈N. We denote Γm(Rd)= Γm
1 (Rd).

Obviously Γm
ρ (Rd) ⊆S ′(Rd) so Proposition 2.3 already gives some information on Tga when

a ∈ Γm
ρ (Rd). The following result, which is a chief tool in the paper, gives characterizations of Tga

for a ∈ Γm
ρ (Rd).

Proposition 3.2. Suppose a ∈S ′(Rd). Then a ∈ Γm
ρ (Rd) if and only if for one (and equivalently

all) g ∈S (Rd) \ 0,

|∂αx ∂
β
ξ Tga(x, ξ)| . 〈x〉m−ρ |α |〈ξ〉−N , N > 0, α, β ∈Nd , x, ξ ∈Rd (3.2)

or equivalently

|∂αx Tga(x, ξ)| . 〈x〉m−ρ |α |〈ξ〉−N , N > 0, α ∈Nd , x, ξ ∈Rd . (3.3)

Proof. Let a ∈ Γm
ρ (Rd), let g ∈S (Rd) \ 0, and let α, β, γ ∈Nd be arbitrary. We seek to show

|ξγ∂αx ∂
β
ξ Tga(x, ξ)| . 〈x〉m−ρ |α | .

To that end, we use (2.7) and (2.8), integrate by parts, and estimate using (2.1) and the fact that g ∈S ,

|ξγ∂αx ∂
β
ξ Tga(x, ξ)| = ���ξ

γTgβ (∂αa)(x, ξ)���

= (2π)−d/2
�����

∫
Rd

(
(i∂y)γe−i〈ξ ,y〉

)
gβ(y) ∂αa(x + y) dy

�����
.

∫
Rd

���∂
γ
y

[
gβ(y) ∂αa(x + y)

] ��� dy

=

∫
Rd

�������

∑
κ6γ

(
γ

κ

)
∂γ−κgβ(y) ∂α+κa(x + y)

�������
dy

.
∑
κ6γ

(
γ

κ

) ∫
Rd

���∂
γ−κgβ(y)��� 〈x + y〉m−ρ |α+κ |dy

. 〈x〉m−ρ |α |
∑
κ6γ

(
γ

κ

) ∫
Rd

���∂
γ−κgβ(y)��� 〈y〉

|m |+ρ |α+κ |dy

. 〈x〉m−ρ |α | .

This implies (3.2) and as a special case (3.3).

Conversely, suppose that (3.3) holds for a ∈S ′(Rd) for some g ∈S (Rd) \ 0, which is a weaker
assumption than (3.2). We obtain from (2.6) that a is given by

a(y)= ‖g‖−2
L2 T ∗g Tga(y)

= ‖g‖−2
L2 (2π)−d/2

∫
R2d

Tga(x, ξ) ei〈ξ ,y−x〉 g(y − x) dx dξ,
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which is an absolutely convergent integral due to (3.3) and the fact that g ∈S (Rd). We may dif-
ferentiate under the integral, so integration by parts, (3.3) and (2.1) give for any α ∈Nd and any
y ∈Rd

��∂αa(y)��= ‖g‖−2
L2 (2π)−d/2

�����

∫
R2d

Tga(x, ξ) ∂αy
(
ei〈ξ ,y−x〉 g(y − x)

)
dx dξ

�����

= ‖g‖−2
L2 (2π)−d/2

�����

∫
R2d

Tga(x, ξ) (−∂x)α
(
ei〈ξ ,y−x〉 g(y − x)

)
dx dξ

�����

= ‖g‖−2
L2 (2π)−d/2

�����

∫
R2d

∂αx Tga(x, ξ) ei〈ξ ,y−x〉 g(y − x) dx dξ
�����

= ‖g‖−2
L2 (2π)−d/2

�����

∫
R2d

∂αx Tga(y − x, ξ) ei〈ξ ,x〉 g(x) dx dξ
�����

.

∫
R2d
〈y − x〉m−ρ |α | 〈ξ〉−d−1 |g(x)| dx dξ

. 〈y〉m−ρ |α |
∫
R2d
〈ξ〉−d−1 〈x〉 |m |+ρ |α | |g(x)| dx dξ

. 〈y〉m−ρ |α | .

Thus a ∈ Γm
ρ (Rd). �

Remark 3.3. It follows from the proof that the best possible constants in (3.3) maximized over
|α| 6 M yield seminorms ρm

g,M,N , M, N ∈N, on Γm
ρ (Rd) equivalent to ρm

M , M ∈N.

We will next reformulate the characterization of Γm(Rd) in a more geometric form.

Proposition 3.4. Let a ∈S ′(Rd). Then a ∈ Γm(Rd) if and only if for one (and equivalently all)
g ∈S (Rd) \ 0 and all N , k ∈N,

|L1 · · · LkTga(x, ξ)| . 〈x〉m〈ξ〉−N , (x, ξ) ∈ T ∗Rd , (3.4)

for any vector fields of the form Li = xj∂xn where 1 6 j, n 6 d, i = 1, . . ., k.

Proof. We may write

L1 · · · Lk =
∑

|α |= |β |6k

cαβxα∂β , cαβ ∈R,

and all differential operators of this form are linear combinations of products of the vector fields Li.
If a ∈ Γm(Rd), then the estimates (3.3) hold for any g ∈S (Rd) \ 0. For N , k ∈N, we have

|L1 · · · LkTga(x, ξ)| .
∑

|α |= |β |6k

〈x〉 |α | |∂βx Tga(x, ξ)|

. 〈x〉m〈ξ〉−N ,

which confirms (3.4).
Suppose on the other hand that the estimates (3.4) hold for some g ∈S (Rd) \ 0 and N , k ∈N,

then for any α, β ∈Nd such that |α| = |β| and N ∈N,

|xα∂βx Tga(x, ξ)| . 〈x〉m〈ξ〉−N .

This gives using |x | |β | 6 d |β |/2 max |α |= |β | |xα |,

|∂
β
x Tga(x, ξ)| . 〈x〉m−|β |〈ξ〉−N , |x | > 1, ξ ∈Rd .

In order to prove (3.3), which is equivalent to a ∈ Γm(Rd), it thus remains to show that
〈ξ〉N |∂

β
x Tga(x, ξ)| remains uniformly bounded for |x| 6 1 and ξ ∈Rd , for any N ∈N. For that we
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estimate

〈ξ〉N |∂
β
x Tga(x, ξ)| = 〈ξ〉N

�������

∑
α6β

cαβ(iξ)αT∂β−αga(x, ξ)

�������
. 〈ξ〉 |β |+N

∑
α6β

���T∂αga(x, ξ)��� .

By Lemma 2.5, we have

���T∂αga(x, ξ)��� .
(
|Tga|︸︷︷︸

.〈x〉m〈ξ〉−M

∗ | T∂αgg︸︷︷︸
∈S

|
)
(x, ξ) . 〈x〉m〈ξ〉−M ,

where the last inequality follows by Peetre’s inequality (2.1) applied to the convolution. Choosing
M > |β| + N, we obtain

〈ξ〉N
���∂
β
x Tga(x, ξ)��� . 1 for |x | 6 1, ξ ∈Rd ,

which proves the claim. �

Remark 3.5. The vector fields xj∂xn play a role in spanning all vector fields tangential to
{0} ×Rd ⊆ T ∗Rd , see Ref. 6, Lemma 18.2.5.

A. Classical symbols

An important subclass of the Shubin symbols are those that admit a polyhomogeneous expansion,
the so-called classical symbols. A symbol a ∈ Γm(Rd) is called classical, denoted a ∈ Γm

cl (R
d), if there

are functions am�j, homogeneous of degree m � j, and smooth outside z = 0, j = 0, 1, . . ., such that
for any zero-excision function χ, meaning χ = 1 − φ with φ ∈C∞c (Rd) and φ≡ 1 near zero, we have
for any N ∈N,

a − χ
N−1∑
j=0

am−j ∈ Γ
m−N (Rd).

By Euler’s relation for homogeneous functions, u is homogeneous of degree m if and only if
Ru = mu, where R is the radial vector field Ra(x) = 〈x, ∇a(x)〉. Adapting the method of Joshi9

gives the following characterization of classical Shubin symbols.

Proposition 3.6. A symbol a ∈ Γm(Rd) is classical if and only if for all N ∈N0,

(R − m + N − 1)(R − m + N − 2) · · · (R − m) a ∈ Γm−N (Rd).

The transformation a→ Tga does not preserve homogeneity. Nevertheless (2.7) and (2.8) give
the relation

Tg (Ra) (x, ξ)= 〈x + i∇ξ ,∇x〉Tga(x, ξ)=: R̃Tga(x, ξ).

Corollary 3.7. Let a ∈S ′(Rd) and g ∈S (Rd) \ 0. Then a ∈ Γm
cl (R

d) if and only if

���∂
α
x

(
(R̃ − m + N − 1)(R̃ − m + N − 2) · · · (R̃ − m)Tga(x, ξ)

) ��� . 〈x〉
m−N−|α |〈ξ〉−M , (3.5)

for any M > 0, N ∈N0, α ∈Nd , and (x, ξ) ∈ T ∗Rd .

Proof. By Proposition 3.6, a ∈ Γm
cl (R

d) if and only if

(R − m + N − 1)(R − m + N − 2) · · · (R − m) a ∈ Γm−N (Rd).

By Proposition 3.2, this holds if and only if for all α ∈Nd , (x, ξ) ∈R2d , and M > 0

|∂αx Tg ((R − m + N − 1)(R − m + N − 2) · · · (R − m) a) (x, ξ)| . 〈x〉m−N−|α |〈ξ〉−M .

This is equivalent to (3.5). �
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IV. CHARACTERIZATION OF PSEUDODIFFERENTIAL OPERATORS

When a ∈ Γm
ρ (R2d), the pseudodifferential operator aw(x, D) is continuous on S (Rd) and extends

to a continuous operator on S ′(Rd).17 The formulas (2.11) and (2.12) can be interpreted as oscillatory
integrals if 0 < ρ 6 1.

Lemma 4.1. Let a ∈ Γm
ρ (R2d) and g ∈S (R2d) \ 0. Then, for (z, ζ)= (z1, z2; ζ1, ζ2) ∈ T ∗R2d ,

TgKa(z, ζ)= (2π)−d/2Tha

(
z1 + z2

2
,
ζ1 − ζ2

2
, ζ1 + ζ2, z2 − z1

)
e

i
2 〈ζ1−ζ2,z1−z2〉, (4.1)

where h=F2(g ◦ κ), κ(x, y) = (x + y/2, x � y/2), and x, y ∈Rd .

Proof. The statement (4.1) can be rephrased as

TgKa

(
z1 −

z2

2
, z1 +

z2

2
; ζ1 +

ζ2

2
,−ζ1 +

ζ2

2

)
= (2π)−d/2Tha (z1, ζ1; ζ2, z2) e−i〈ζ1,z2〉,

for all (z1, z2; ζ1, ζ2) ∈ T ∗R2d . We have Ka = (2π)−d/2(F−1
2 a) ◦ κ−1 which gives

TgKa

(
z1 −

z2

2
, z1 +

z2

2
; ζ1 +

ζ2

2
,−ζ1 +

ζ2

2

)
= (2π)−3d/2((F−1

2 a) ◦ κ−1, Tz1−
z2
2 ,z1+

z2
2

M
ζ1+

ζ2
2 ,−ζ1+

ζ2
2

g)

= (2π)−3d/2(a, F2(Tz1−
z2
2 ,z1+

z2
2

M
ζ1+

ζ2
2 ,−ζ1+

ζ2
2

g ◦ κ)).

(4.2)

We calculate

(2π)d/2F2(Tz1−
z2
2 ,z1+

z2
2

M
ζ1+

ζ2
2 ,−ζ1+

ζ2
2

g ◦ κ)(y, η)

=

∫
Rd

Tz1−
z2
2 ,z1+

z2
2

M
ζ1+

ζ2
2 ,−ζ1+

ζ2
2

g ◦ κ(y, u)e−i〈u,η〉 du

=

∫
Rd

e
i
(
〈ζ1+

ζ2
2 ,y+ u

2−z1+
z2
2 〉+〈−ζ1+

ζ2
2 ,y− u

2−z1−
z2
2 〉−〈u,η〉

)

× g
(
y +

u
2
− z1 +

z2

2
, y −

u
2
− z1 −

z2

2

)
du

= ei(〈ζ1,z2〉+〈ζ2,y−z1〉)
∫
Rd

e−i〈u,η−ζ1〉g
(
y +

u
2
− z1 +

z2

2
, y −

u
2
− z1 −

z2

2

)
du

= ei〈ζ1,z2〉ei〈ζ2,y−z1〉

∫
Rd

e−i〈u−z2,η−ζ1〉g
(
y − z1 +

u
2

, y − z1 −
u
2

)
du

= (2π)d/2ei〈ζ1,z2〉ei(〈ζ2,y−z1〉+〈z2,η−ζ1〉)F2(g ◦ κ)(y − z1, η − ζ1)

= (2π)d/2ei〈ζ1,z2〉Tz1,ζ1 Mζ2,z2F2(g ◦ κ)(y, η).

Insertion into (4.2) gives the claimed conclusion. �

Definition 4.2. For u ∈S ′(R2d) and g ∈S (R2d) \ 0, we denote

T ∆g u(z1, z2, ζ1, ζ2)= e−
i
2 〈ζ1−ζ2,z1−z2〉Tgu(z1, z2, ζ1, ζ2),

for (z1, z2; ζ1, ζ2) ∈ T ∗R2d .
As a consequence of Proposition 3.2, we obtain the following characterization of the Schwartz

kernels of Weyl quantized Shubin operators.
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Proposition 4.3. Let K ∈S ′(R2d). Then K is the Schwartz kernel of an operator of the form
(2.11) with a ∈ Γm

ρ (R2d) if and only if for all α, β ∈Nd and N ∈N and any g ∈S (R2d) \ 0, we have

|(∂z1 + ∂z2 )α(∂ζ1 − ∂ζ2 )βT ∆g K(z1, z2, ζ1, ζ2)| . 〈(z1 + z2, ζ1 − ζ2)〉m−ρ |α+β |〈(z1 − z2, ζ1 + ζ2)〉−N ,

(z1, z2; ζ1, ζ2) ∈ T ∗R2d . (4.3)

Remark 4.4. Corresponding to Proposition 3.4, we may rephrase the estimates (4.3) for Γm(R2d)
as

|L1 · · · LkT ∆g K(z1, z2, ζ1, ζ2)| . 〈(z1 + z2, ζ1 − ζ2)〉m〈(z1 − z2, ζ1 + ζ2)〉−N ,

where Li are differential operators of the form

Li = (z1,j + z2,j)(∂z1,n + ∂z2,n ), Li = (z1,j + z2,j)(∂ζ1,n − ∂ζ2,n ),

Li = (ζ1,j − ζ2,j)(∂z1,n + ∂z2,n ), or Li = (ζ1,j − ζ2,j)(∂ζ1,n − ∂ζ2,n ),

for 1 6 j, n 6 d and 1 6 i 6 k.

Proposition 4.3 may be phrased in terms of the Schwartz kernel KTgaw (x,D)T ∗h of the operator

Tgaw(x, D)T ∗h for a ∈ Γm
ρ (R2d). Let u, v ∈S (Rd) and g, h ∈S (Rd) \ 0. On the one hand,

(aw(x, D)u, v)= ‖g‖−2
L2 ‖h‖

−2
L2 (Tgaw(x, D)T ∗h (Thu), Tgv)

= ‖g‖−2
L2 ‖h‖

−2
L2 (KTgaw (x,D)T ∗h , Tgv ⊗ Thu)

and on the other hand,

(aw(x, D)u, v)= (Ka, v ⊗ u)= ‖g‖−2
L2 ‖h‖

−2
L2 (Tg⊗hKa, Tg⊗h(v ⊗ u)).

Since
(Tgv ⊗ Thu)(z1, ζ1, z2, ζ2)= Tg⊗h(v ⊗ u)(z1, z2, ζ1,−ζ2),

this proves the formula

KTgaw (x,D)T ∗h (z1, ζ1, z2,−ζ2)= Tg⊗hKa(z1, z2, ζ1, ζ2). (4.4)

In view of the last identity and Proposition 4.3, we have the following result. Tataru (Ref. 18,
Theorem 1) obtained a version of this characterization in the special case Γ0

0 , and α = β = 0.

Corollary 4.5. We have a ∈ Γm
ρ (R2d) if and only if for all α, β ∈Nd and N ∈N and any g, h ∈

S (R2d) \ 0,

����(∂z1 + ∂z2 )α(∂ζ1 − ∂ζ2 )β
(
e−

i
2 〈z1−z2,ζ1−ζ2〉KTgaw (x,D)T ∗h (z1, ζ1, z2,−ζ2)

) ����
. 〈(z1 + z2, ζ1 − ζ2)〉m−ρ |α+β |〈(z1 − z2, ζ1 + ζ2)〉−N , (z1, z2; ζ1, ζ2) ∈ T ∗R2d . (4.5)

A. Continuity in Shubin–Sobolev spaces

As an application of the previous characterization, we give a simple proof of continuity of Shubin
pseudodifferential operators in isotropic Sobolev spaces. The Shubin–Sobolev spaces Qs(Rd), s ∈R,
introduced by Shubin17 (cf. Refs. 5 and 12) can be defined as the modulation space M2

s (Rd), that is,

Qs(Rd)= {u ∈S ′(Rd) : 〈·〉sTgu ∈ L2(R2d)},

where g ∈S (Rd) \ 0 is fixed and arbitrary, with norm

‖u‖Qs =



〈·〉

sTgu


L2(R2d )
.

The characterization of Shubin pseudodifferential operators given in Proposition 4.3 yields a
simple proof of their Qs-continuity, cf. Ref. 18.

Proposition 4.6. If a ∈ Γm
0 (R2d), then aw(x, D) : Qs+m(Rd)→Qs(Rd) is continuous for all s ∈R.
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Proof. Set A = aw(x, D). We have for u ∈Qs+m(Rd),

‖Au‖Qs = sup
v∈Q−s

|(Au, v)| = sup
v∈Q−s

|(KTψ0 AT ∗ψ0
, Tψ0 v ⊗ Tψ0 u)|

= sup
v∈Q−s

|(〈·〉s ⊗ 〈·〉−s−mKTψ0 AT ∗ψ0
, 〈·〉−s Tψ0 v︸     ︷︷     ︸
∈L2(R2d )

⊗ 〈·〉s+m Tψ0 u︸       ︷︷       ︸
∈L2(R2d )

)|.

It remains to show that

〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−mKTψ0 AT ∗ψ0
(z1, ζ1, z2, ζ2) (4.6)

is the Schwartz kernel of a continuous operator on L2(R2d).
First we deduce from (4.4), Proposition 4.3, and (2.1) the estimate for any N ∈N,

〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−m |KTψ0 AT ∗ψ0
(z1, ζ1, z2, ζ2)|

= 〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−m |Tψ0 Ka(z1, z2, ζ1,−ζ2)|

. 〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−m〈(z1 + z2, ζ1 + ζ2)〉m〈(z1 − z2, ζ1 − ζ2)〉−N

. 〈(z2, ζ2)〉−m〈(z1, ζ1) + (z2, ζ2)〉m〈(z1, ζ1) − (z2, ζ2)〉 |s |−N

. 〈(z1, ζ1) − (z2, ζ2)〉 |s |+ |m |−N .

Then we apply Schur’s test which gives, for N > 0 sufficiently large,∫
R2d

����〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−mKTψ0 AT ∗ψ0
(z1, ζ1, z2, ζ2)

���� dz1 dζ1 . 1,∫
R2d

����〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−mKTψ0 AT ∗ψ0
(z1, ζ1, z2, ζ2)

���� dz2 dζ2 . 1.

This implies that (4.6) is the Schwartz kernel of an operator that is continuous on L2(R2d). �

V. Γ-CONORMAL DISTRIBUTIONS

The kernels of pseudodifferential operators with Hörmander symbols are prototypes of conormal
distributions, see Ref. 6, Chap. 18.2. We introduce an analogous notion in the Shubin calculus. Before
giving a precise definition, we make some observations to clarify our idea.

Proposition 4.3 may be rephrased using the diagonal and the antidiagonal

∆= {(x, x) ∈R2d : x ∈Rd }, ∆
⊥ = {(x,−x) ∈R2d : x ∈Rd }

considered as linear subspaces of R2d . Denoting Euclidean distance to a subset V by dist(·, V ), we
have

dist((x, y),∆)= inf
z∈Rd
|(x, y) − (z, z)| =

|x − y|
√

2
, (x, y) ∈R2d ,

and dist((x, y),∆⊥) )= |x + y|/
√

2 for (x, y) ∈R2d .
The inequalities (4.3) can thus be expressed, for (x, ξ) ∈ T ∗R2d , as

���L1 · · · LkT ∆g Ka(x, ξ)��� .
(
1 + dist((x, ξ), N(∆⊥))

)m−ρk
(1 + dist((x, ξ), N(∆)))−N , (5.1)

where N(∆)=∆ × ∆⊥ ⊆ T ∗R2d and N(∆⊥)=∆⊥ × ∆ ⊆ T ∗R2d denote the conormal spaces of ∆ and
∆⊥, respectively, and

Lj = 〈bj,∇x,ξ 〉 (5.2)

is a first order differential operator with constant coefficients such that bj ∈ N(∆), j = 1, 2, . . ., k, and
k, N ∈N.

Observe that in (5.1) we may substitute N(∆⊥) by any linear subspace transversal to N(∆), that
is, any vector subspace V ⊆ T ∗R2d such that T ∗R2d =N(∆) ⊕ V . Note also that

1
2
〈x1 − x2, ξ1 − ξ2〉= 〈π∆⊥x, ξ〉.
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In the following, we generalize (5.1) by replacing the diagonal ∆ by a general linear subspace,
and the dimension 2d is replaced by d. For simplicity of notation, we work with ρ = 1 but this can be
generalized to 0 6 ρ 6 1.

Definition 5.1. Suppose Y ⊆Rd is an n-dimensional linear subspace, 0 6 n 6 d, let N(Y )
= Y × Y⊥, and let V ⊆ T ∗Rd be a d-dimensional linear subspace such that N(Y ) ⊕ V =T ∗Rd . Then
u ∈S ′(Rd) is Γ-conormal to Y of degree m ∈R, denoted u ∈ Im

Γ
(Rd , Y ), if for some g ∈S (Rd) \ 0

and for any k, N ∈N, we have

���L1 · · · LkT Y
g u(x, ξ)��� . (1 + dist((x, ξ), V ))m−k (1 + dist((x, ξ), N(Y )))−N ,

(x, ξ) ∈ T ∗Rd ,
(5.3)

where
T Y

g u(x, ξ)= e−i〈πY⊥ x,ξ〉Tgu(x, ξ), (x, ξ) ∈ T ∗Rd ,

and Lj, j = 1, . . ., k are the first order differential operators defined by (5.2) with bj ∈ N(Y ).
For a fixed g ∈S \ 0, we equip Im

Γ
(Rd , Y ) with a topology using seminorms defined as the

best possible constants in (5.3) for N , M ∈N fixed, maximized over k 6 M and all combinations of
bj ∈ N(Y ) belonging to a fixed and arbitrary basis.

As observed, the definition is independent of the linear subspace V as long as N(Y )⊕ V =T ∗Rd ,
and often it is convenient to use V = N(Y )⊥ = N(Y⊥). We will also see that the definition and the
topology do not depend on g ∈S (Rd) \ 0 (see Corollary 5.8).

If we pick coordinates such that Y =Rn × {0} ⊆Rd , then

N(Y )= {(x1, 0, 0, ξ2) : x1 ∈Rn, ξ2 ∈Rd−n} ⊆ T ∗Rd ,

N(Y⊥)= {(0, x2, ξ1, 0) : x2 ∈Rd−n, ξ1 ∈Rn} ⊆ T ∗Rd .

We split variables as x = (x1, x2) ∈Rd , x1 ∈Rn, and x2 ∈Rd−n. The inequalities (5.3) reduce to

���∂
α
x1
∂
β
ξ2

(
e−i〈x2,ξ2〉Tgu(x, ξ)

) ��� . 〈(x1, ξ2)〉m−|α+β |〈(x2, ξ1)〉−N , (5.4)

for α ∈Nn, β ∈Nd−n, and N ∈N.

Example 5.2. By Proposition 4.3 and (5.1), we have

Im
Γ

(R2d ,∆)= {Ka ∈S ′(R2d) : a ∈ Γm(R2d)}.

Example 5.3. Write x = (x1, x2), x1 ∈Rn, x2 ∈Rd−n, and consider u= 1 ⊗ δ0 ∈S ′(Rd) with
1 ∈S ′(Rn) and δ0 ∈S ′(Rd−n). The distribution u is a prototypical example of a distribution
Γ-conormal (and also conormal in the standard sense of Ref. 6, Chap. 18.2) to the subspace Rn × {0}.
It is a Gaussian distribution in the sense of Hörmander8 (cf. Ref. 13). A computation yields

Tψ0 u(x, ξ)= (2π)−
d−n

2 π−
d
4 ei〈x2,ξ2〉e−

1
2 ( |x2 |

2+ |ξ1 |
2),

so the inequalities (5.4) are satisfied for m = 0. In particular δ0(Rd) ∈ I0
Γ
(Rd , {0}).

Next we characterize the conormal distributions of which the latter example is a particular case.
Again we denote x = (x1, x2) ∈Rd , x1 ∈Rn, and x2 ∈Rd−n.

Lemma 5.4. If u ∈S ′(Rd) and 0 6 n 6 d, then u ∈ Im
Γ

(Rd ,Rn × {0}) if and only if

u(x)= (2π)−(d−n)/2
∫
Rd−n

ei〈x2,θ〉a(x1, θ) dθ,

for some a ∈ Γm(Rd), that is u=F−1
2 a.

Proof. Let g ∈S (Rd) \ 0. By Lemma 2.7, we have

Tgu(x1, x2, ξ1, ξ2)= ei〈x2,ξ2〉TF2gF2u(x1, ξ2, ξ1,−x2).
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Set a=F2u ∈S ′(Rd). Proposition 3.2 implies that a ∈ Γm(Rd) if and only if the estimate (5.4)
hold for all for α ∈Nn, β ∈Nd−n and N ∈N. By Definition 5.1, this happens exactly when
u ∈ Im

Γ
(Rd ,Rn × {0}). �

The extreme cases n = 0 and n = d yield

Corollary 5.5. Im
Γ

(Rd , {0})=FΓm(Rd) and Im
Γ

(Rd ,Rd)= Γm(Rd).
The proof of Lemma 5.4 gives the following byproduct.

Corollary 5.6. The topology on Im
Γ

(Rd ,Rn × {0}) does not depend on g.

The next result treats how Γ-conormal distributions behave under orthogonal coordinate
transformations.

Lemma 5.7. If Y ⊆Rd is an n-dimensional linear subspace, 0 6 n 6 d, and B ∈ O(d), then
B∗ : Im

Γ
(Rd , Y )→ Im

Γ
(Rd , BtY ) is a homeomorphism.

Proof. Let g ∈S (Rd) \ 0. We have

Tg(B∗u)(x, ξ)= Thu(Bx, Bξ),

where h= (Bt)∗g ∈S (Rd). From this and π(BtY )⊥ =BtπY⊥B, we obtain

T BtY
g (B∗u)(x, ξ)= T Y

h u(Bx, Bξ),

so B∗u ∈ Im
Γ

(Rd , BtY ) follows from Definition 5.1, N(BtY ) = BtY × BtY⊥ and

dist((Bx, Bξ), N(Y ))= dist((x, ξ), N(BtY )), (x, ξ) ∈ T ∗Rd .

It also follows that the map u→B∗u is continuous from Im
Γ

(Rd , Y ) to Im
Γ

(Rd , BtY ) when the topologies
for Im

Γ
(Rd , Y ) and Im

Γ
(Rd , BtY ) are defined by means of h ∈S and g ∈S , respectively. �

If we combine Lemma 5.7 with Corollary 5.6, then we obtain the following generalization of
the latter result.

Corollary 5.8. If Y ⊆Rd is an n-dimensional linear subspace, 0 6 n 6 d, then the topology on
Im
Γ

(Rd , Y ) does not depend on g.
We can also extract the following generalization of Lemma 5.4 from Lemma 5.7.

Proposition 5.9. Let 0 6 n 6 d and let Y ⊆Rd be an n-dimensional linear subspace. Then
u ∈S ′(Rd) satisfies u ∈ Im

Γ
(Rd , Y ) if and only if

u(x)=
∫
Rd−n

ei〈M t
2x,θ〉a(M t

1x, θ) dθ, (5.5)

for some a ∈ Γm(Rd), where M2 ∈Md×(d−n)(R) and M1 ∈Md×n(R) are matrices such that Y =Ker M t
2

and U = [M1 M2] ∈GL(d,R).

Proof. If u ∈ Im
Γ

(Rd , Y ), then we can pick U = [M1 M2] ∈ O(d) where M1 ∈Md×n(R) and
M2 ∈Md×(d−n)(R) such that Y =Ker M t

2, which implies that U tY =Rn × {0}. By Lemma 5.7, we
have U∗u ∈ Im

Γ
(Rd ,Rn × {0}), and (5.5) with a ∈ Γm(Rd) is then a consequence of Lemma 5.4.

Suppose on the other hand that (5.5) holds for a ∈ Γm(Rd) and U = [M1 M2] ∈GL(d,R). Set
Y =Ker M t

2. We may assume that U = [M1 M2] ∈ O(d), after modifying a ∈ Γm(Rd) by means of
a linear invertible coordinate transformation, which is permitted since Γm is invariant under such
transformations. By Lemma 5.4, we have U∗u ∈ Im

Γ
(Rd ,Rn × {0}), and Lemma 5.7 then gives u ∈

Im
Γ

(Rd , Y ). �
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Since ⋂
m∈R
Γ

m(Rd)=S (Rd),

we have the following consequence.

Corollary 5.10. If 0 6 n 6 d and Y ⊆Rd is an n-dimensional linear subspace then

S (Rd) ⊆ Im
Γ

(Rd , Y ).

We also obtain a generalization of Lemma 5.7.

Corollary 5.11. If Y ⊆Rd is an n-dimensional linear subspace, 0 6 n 6 d, and B ∈GL(d,R)
then B∗ : Im

Γ
(Rd , Y )→ Im

Γ
(Rd , B−1Y ) is a homeomorphism.

Proof. By Proposition 5.9, we have u ∈ Im
Γ

(Rd , Y ) if and only if B∗u ∈ Im
Γ

(Rd , B−1Y ). It remains
to show that B∗ is continuous. By Lemma 5.7 we may replace Y with any n-dimensional linear
subspace. Using the singular value decomposition B = UΣV t , where U, V ∈ O(d) and Σ is diagonal
with positive entries, the proof of the continuity of B∗ reduces, again using Lemma 5.7, to a proof of
the continuity of

Σ
∗ : Im
Γ

(Rd ,Rn × {0})→ Im
Γ

(Rd ,Rn × {0}).

The latter continuity follows straightforwardly using the estimates (5.4). �

By Lemma 2.7
Tĝû(x, ξ)= ei〈x,ξ〉Tgu(−ξ, x),

which gives
T Y⊥

ĝ û(x, ξ)= ei(〈x,ξ〉−〈πY x,ξ〉)Tgu(−ξ, x)= T Y
g u(−ξ, x).

Thus it follows from Definition 5.1 that F : Im
Γ

(Rd , Y )→ Im
Γ

(Rd , Y⊥) continuously.

Proposition 5.12. If Y ⊆Rd is an n-dimensional linear subspace, 0 6 n 6 d, then the Fourier
transform is a homeomorphism from Im

Γ
(Rd , Y ) to Im

Γ
(Rd , Y⊥).

Example 5.13. If u ∈ Im
Γ

(Rd ,Rn × {0}), then by Lemma 5.4, there exists a ∈ Γm(Rd) such that

u(x)= (2π)−(d−n)/2
∫
Rd−n

ei〈x2,θ〉a(x1, θ) dθ.

If B ∈GL(d,R) and

B=

(
B1 0
0 B2

)
,

then the action of B can understood as an action on the symbol of u,

B∗u(x)= (2π)−(d−n)/2
∫
Rd−n

ei〈x2,θ〉a(B1x1, B−t
2 θ)|B2 |

−1 dθ.

Remark 5.14. The estimates (5.3) in Definition 5.1 can be translated to a geometric form, as in
Remark 4.4 for Schwartz kernels of Shubin operators. The result is

���(ΠN(Y )(x, ξ))α(ΠN(Y )∂x,ξ )βT Y
g u(x, ξ)��� . (1 + dist((x, ξ), V ))m (1 + dist((x, ξ), N(Y )))−N ,

for α, β ∈N2d such that |α| = |β|, and N ∈N arbitrary.

Remark 5.15. Let X be a smooth manifold of dimension d and let Y ⊆ X be a closed submanifold.
Hörmander’s conormal distributions Im(X, Y ) with respect to Y of order m ∈R is by (Ref. 6, Definition
18.2.6) all u ∈D′(X) such that

L1 . . . Lku ∈ B−m−d/4
2,∞, loc (X), k ∈N,
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where Lj are first order differential operators with coefficients tangential to Y, and where B−m−d/4
2,∞, loc (X)

is a Besov space.
Comparing this definition with the estimates defining Im

Γ
(Rd , Y ) in Remark 5.14, we see that

the fact that we are working with isotropic symbol classes made it necessary to replace the local,
Fourier-based Besov spaces with a global, isotropic version based on the transform Tψ0 , resembling
a modulation space.

We note that the submanifold Y is allowed to be nonlinear in Im(X, Y ), as opposed to the linear
submanifold Y ⊆Rd we use in Γ-conormal distributions Im

Γ
(Rd , Y ).

A. Microlocal properties of Γ-conormal distributions

The wave front set of a conormal distribution in Im(X, Y ) is contained in the conormal bundle of
the submanifold Y (Ref. 6, Lemma 25.1.2).

The wave front set adapted to the Shubin calculus is the Gabor wave front set studied, e.g., in
Refs. 7, 11, and 14–16, see also Ref. 2. It can be introduced using either pseudodifferential operators
or the short-time Fourier transform. In the latter definition, one may replace Vgu by Tgu since they
are identical up to a factor of modulus one.

Definition 5.16. If u ∈S ′(Rd) and g ∈S (Rd) \ 0, then (x0, ξ0) ∈ T ∗Rd \ 0 satisfies (x0, ξ0)
<WFG(u) if there exists an open cone V ⊆ T ∗Rd \ 0 containing (x0, ξ0) such that for any N ∈N there
exists CV ,g,N > 0 such that |Tgu(x, ξ)| 6CV ,g,N 〈(x, ξ)〉−N when (x, ξ) ∈ V.

The definition does not depend on g ∈S (Rd) \ 0. The Gabor wave front set transforms well
under the metaplectic operators discussed in Sec. II, cf. Ref. 7, that is,

WFG(µ(χ)u)= χ (WFG(u)) , u ∈S ′(Rd), χ ∈ Sp(d,R).

Proposition 5.17. Let Y ⊆Rd be an n-dimensional linear subspace, 0 6 n 6 d. If u ∈ Im
Γ

(Rd , Y ),
then

WFG(u) ⊆N(Y ).

Proof. Suppose (x, ξ) < N(Y ). This means (πY⊥x, πY ξ), 0, so (x, ξ) ∈ V where the open conic
set V ⊆ T ∗Rd is defined by

V = {(x, ξ) ∈ T ∗Rd : |(πY x, πY⊥ξ)| <C |(πY⊥x, πY ξ)|},

for some C > 0. Using

|(x, ξ)|2 = |(πY x, πY⊥ξ)|2 + |(πY⊥x, πY ξ)|2,

dist(x, Y )= |πY⊥x |, dist(x, Y⊥) = |πY x|, and

dist2((x, ξ), N(Y ))= dist2(x, Y ) + dist2(ξ, Y⊥),

the result follows from Definition 5.1 (with trivial operators Lj). �

Corollary 5.18. If a ∈ Γm(R2d) and aw(x, D) has Schwartz kernel Ka, then

WFG(Ka) ⊆N(∆) ⊆ T ∗R2d .

It is well known that Shubin pseudodifferential operators are microlocal with respect to WFG,
that is, if a ∈ Γm(R2d) and u ∈S ′(Rd), then

WFG(aw(x, D)u) ⊆WFG(u),

see, e.g., Refs. 7 and 16. We show that they also preserve Γ-conormality.

Proposition 5.19. Let Y ⊆Rd be an n-dimensional linear subspace, 0 6 n 6 d. If a ∈ Γm′(R2d),
then aw(x, D) is continuous from Im

Γ
(Rd , Y ) to Im+m′

Γ
(Rd , Y ).
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Proof. If a ∈ Γm′(R2d) and U ∈O(d), then we have by symplectic invariance of the Weyl calculus
(2.13)

(U t)∗aw(x, D)U∗ = bw(x, D),

where b(x, ξ)= a(U tx, U tξ) ∈ Γm′(R2d). By Lemma 5.7, we may therefore assume that Y =Rn × {0}.
The symplectic invariance also guarantees that

F −1
2 bw(x, D)F2 = cw(x, D),

with c(x, ξ)= b(x1, ξ2, ξ1,−x2) ∈ Γm′(R2d) where x = (x1, x2) ∈Rd , x1 ∈Rn, and x2 ∈Rd−n. To prove
aw(x, D)u ∈ Im+m′

Γ
(Rd ,Rn × {0}) for a ∈ Γm′(R2d) and u ∈ Im

Γ
(Rd ,Rn × {0}) is therefore by Lemma 5.4

equivalent to proving that aw(x, D)u ∈ Γm+m′(Rd) for a ∈ Γm′(R2d) and u ∈ Γm(Rd).
Let a ∈ Γm′(R2d), u ∈ Γm(Rd) and set A = aw(x, D). By Proposition 3.2, it suffices to

verify

|∂αx Tψ0 Au(x, ξ)| . 〈x〉m+m′−|α |〈ξ〉−N , (x, ξ) ∈ T ∗Rd ,

for any N > 0 and α ∈Nd .
Let N > 0 and α ∈Nd . Writing Tψ0 Au= (Tψ0 AT ∗ψ0

)Tψ0 u and using (4.4), we are thus tasked with
estimating ∂αx acting on

Tψ0 Au(x, ξ)=
∫
R2d

Tψ0 Ka(x, y, ξ,−η)Tψ0 u(y, η) dy dη

=

∫
R2d

e
i
2 〈x−y,ξ+η〉 T ∆ψ0

Ka(x, y, ξ,−η) Tψ0 u(y, η) dy dη.
(5.6)

The integral (5.6) converges due to the estimates

|∂αy Tψ0 u(y, η)| . 〈y〉m−|α |〈η〉−N , y, η ∈Rd , α ∈Nd , N > 0,

which follows from Proposition 3.2, and the estimates

|(∂x + ∂y)αT ∆ψ0
Ka(x, y, ξ,−η)| . 〈(x + y, ξ + η)〉m

′−|α |〈(x − y, ξ − η)〉−N ,

x, y, ξ, η ∈Rd , α ∈Nd , N > 0,

that are guaranteed by Proposition 4.3.
Writing ∂xj = ∂xj + ∂yj − ∂yj for 1 6 j 6 d and differentiating under the integral in (5.6), we obtain

by integration by parts for any N1, N2 > 0,

���∂
α
x Tψ0 Au(x, ξ)���

=
∑
β6α

Cβ
�����

∫
R2d

(∂x + ∂y)β
(
e

i
2 〈x−y,ξ+η〉 T ∆ψ0

Ka(x, y, ξ,−η)
)
∂
α−β
y Tψ0 u(y, η) dy dη

�����

=
∑
β6α

Cβ
�����

∫
R2d

e
i
2 〈x−y,ξ+η〉 (∂x + ∂y)β T ∆ψ0

Ka(x, y, ξ,−η) ∂α−βy Tψ0 u(y, η) dy dη
�����

.
∑
β6α

∫
R2d

���(∂x + ∂y)βT ∆ψ0
Ka(x, y, ξ,−η) ∂α−βy Tψ0 u(y, η)��� dy dη,

.
∑
β6α

∫
R2d
〈(x + y, ξ + η)〉m

′−|β |〈(x − y, ξ − η)〉−N1 〈y〉m−|α−β |〈η〉−N2 dy dη.

Finally we estimate
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∫
R2d
〈(x + y, ξ + η)〉m

′−|β |〈(x − y, ξ − η)〉−N1〈y〉m−|α−β |〈η〉−N2 dy dη

=

∫
R2d
〈(2x + y, 2ξ + η)〉m

′−|β |〈(y, η)〉−N1〈y + x〉m−|α−β |〈η + ξ〉−N2 dy dη

.

∫
R2d
〈x〉m

′−|β |〈y〉 |m
′ |+ |β |〈ξ〉 |m

′ |+ |β |〈η〉 |m
′ |+ |β |〈(y, η)〉−N1〈x〉m−|α−β |

× 〈y〉 |m |+ |α |〈ξ〉−N2〈η〉N2 dy dη

. 〈x〉m
′+m−|α |〈ξ〉 |m

′ |+ |α |−N2

∫
R2d
〈y〉 |m

′ |+ |m |+2 |α |〈η〉 |m
′ |+ |α |+N2〈(y, η)〉−N1 dy dη

. 〈x〉m
′+m−|α |〈ξ〉−N ,

provided N1 > N2 + 2|m′| + |m| + 3|α| + 2d and N2 > N + |m′| + |α|.
This proves

���∂
α
x Tψ0 Au(x, ξ)��� . 〈x〉

m′+m−|α |〈ξ〉−N , (x, ξ) ∈ T ∗Rd

and as a by-product of these estimates, we obtain the claimed continuity. �

Remark 5.20. The proof shows that the result can be generalized. If a ∈ Γm′
ρ (R2d) and

u ∈ Im
Γ,ρ(Rd , Y ) then aw(x, D)u ∈ Im+m′

Γ,ρ (Rd , Y ), for 06 ρ6 1. Here Im
Γ,ρ(Rd , Y ) is defined as in Definition

5.1 with the modified estimate

(1 + dist((x, ξ), V ))m−ρk (1 + dist((x, ξ), N(Y )))−N

in (5.3).
Since Proposition 5.19 shows how Γ-conormality is preserved under the action of a pseudodif-

ferential operator, we obtain the following result on conormal elliptic regularity:

Corollary 5.21 (Conormal elliptic regularity). Suppose u ∈S ′(Rd) solves the pseudodifferential
equation aw(x, D)u = f with f ∈ Im

Γ
(Rd , Y ) where a ∈ Γm′(R2d) is globally elliptic, that is, satisfying

|a(x, ξ)| >C〈(x, ξ)〉m
′

, |(x, ξ)| > R, (5.7)

for C, R > 0. Then u ∈ Im−m′
Γ

(Rd , Y ).

Proof. Under condition (5.7), aw(x, D) admits a parametrix pw(x, D) with p ∈ Γ−m′ and
pw(x, D)aw(x, D) = I + R, where R is continuous S ′→S .17 Then u = pw(x, D)f � Ru and hence
u ∈ Im−m′

Γ
(Rd , Y ). �
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