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We characterize the Schwartz kernels of pseudodifferential operators of Shubin type
by means of a Fourier-Bros-lagolnitzer transform. Based on this, we introduce as a
generalization a new class of tempered distributions called Shubin conormal dis-
tributions. We study their transformation behavior, normal forms, and microlocal
properties. Published by AIP Publishing. https://doi.org/10.1063/1.5022778

I. INTRODUCTION

The theory of pseudodifferential operators has proven to be a powerful tool in many disciplines
of mathematics. The space of conormal distributions was designed to contain the Schwartz kernels of
pseudodifferential operators with Hormander symbols, see Ref. 6, Chap. 18.2. Conormal distributions
are the starting point for the theory of Lagrangian distributions and Fourier integral operators (Ref. 6,
Chap. 25), but it has also been studied in itself to a great extent, and it is essential in several theories,
see, e.g., Refs. 1 and 10. A distribution u defined on a smooth manifold is conormal with respect to
a closed smooth submanifold if Lu belongs to a certain Besov space locally for certain differential
operators L that depend on the submanifold.

For the well-studied pseudodifferential operators on R? with Shubin symbols,'” we are not aware
of a concept corresponding to conormal distributions. In this paper, we fill this gap by introducing a
theory of conormal distributions with respect to linear subspaces of R, adapted to Shubin operators.
Recall that a Shubin symbol a € I'}! of order m € R satisfies the estimates

107 ae, )1 < (1+ x| + )" P11, (x,£) eRI xR?, @, fe N,

where 0 < p < 1.

The key feature of the Shubin symbols that is difficult to describe by the standard techniques is
the inherent isotropy, in particular that taking derivatives with respect to x increases the decay in &.
The tool that we employ to circumvent this issue is a version of the short-time Fourier transform,
which is more suitable to isotropic symbols than the standard Fourier transform on which the classical
theory is based.

Our work may be seen as phase space analysis of Shubin conormality. We extend Tataru’s
characterization'® of the Schwartz kernels of pseudodifferential operators with m = p = 0 to
0 < p < 1 and order m € R. The behavior of the symbols with respect to derivatives and the order is
reflected in phase space.

Based on the characterization of the Schwartz kernels of Shubin operators, we define conormal
tempered distributions on R¢ with respect to a linear subspace and an order m € R. To distinguish
them from Hormander’s notion of conormal distribution, we use the prefix I'-conormal. The Schwartz
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kernels of Shubin operators are thus identical to the I'-conormal distributions on R?? with respect to
the diagonal in R??.

We prove functional properties of I'-conormal distributions and check that they transform well
under the Fourier transform and linear coordinate transformations. We equip them with a topology
such that these operators become continuous. The present paper can be seen as a first step in the
direction of a phase space analysis for Lagrangian distributions in the Shubin calculus which, as far
as we know, does not yet exist. This will be the subject of a forthcoming paper.

The paper is organized as follows: In Sec. II, we introduce the integral transform on which our
analysis is based and state its basic properties. Section III contains a phase space characterization of
Shubin symbols in terms of the integral transform. In Sec. IV, we transfer the characterization to the
Schwartz kernels of the associated class of global pseudodifferential operators. Along the way, we
give a simple proof of the continuity of these operators on the associated scale of Shubin—Sobolev
modulation spaces. Finally in Sec. V, we define I'-conormal distributions and discuss their functional
and microlocal properties.

Il. AN INTEGRAL TRANSFORM OF FBI TYPE

In this section, we introduce the tool for the definition of Shubin conormal distributions, namely,
a variant of the Fourier-Bros-Iagolnitzer (FBI) transform, and discuss its main properties. First, we
fix some notation.

Basic notation. We use .(R?) and .#”(R?) for the Schwartz space of rapidly decaying smooth
functions and its dual, the tempered distributions. We write (u, v) for the bilinear pairing between
a test function v and a distribution u and (u, v) = (u, v) for the sesquilinear pairing as well as the L?
scalar product if u, v € L2(RY).

We use T'yu(x) = u(x —y) and M su(x) = €y (x), where (-, -y denotes the inner product on RY,
for the operation of translation by y € R? and modulation by & € RY, respectively, applied to functions
or distributions. For x € RY, we write (x) =+4/1 + |x|2. Peetre’s inequality is

(x +y) < Cyx) ()] x,yeR? seR, C,>0. 2.1

We write dx for the dual Lebesgue measure (2m)~%dx. The notation f(x) < g(x) means that
f(x) < Cg(x) for some C > 0, for all x in the domain of f and g. If f(x) < g(x) < f(x), then we
write f(x) =< g(x).

The Fourier transform is normalized for f € .7 (R?) as

FF (&) =1 (&) =) /Rdf(x)e—i(x@ dx,

which makes it unitary on L>(R?). The partial Fourier transform with respect to a vector variable
indexed by j is denoted .%;. For 1 < j < d, we use D; = —id; and extend to multi-indices.

The orthogonal projection on a linear subspace ¥ C R? is 7ry. We denote by My, xq, (R) the space
of d; X d, matrices with real entries, by GL(d, R) the group of invertible elements of M 4(R), and
by O(d) the subgroup of orthogonal matrices in GL(d, R). The real symplectic group” is denoted
Sp(d, R) and is defined as the matrices in GL(2d, R) that leaves invariant the canonical symplectic
form on T*Rd,

T((x, ), (&, &N =, &) = (0, &), (x,6),(, ) eT'RY,

For a function f on RY and A € GL(d, R), we denote the pullback by A*f = f o A. The determinant
of A € My (R) is IAl, the transpose is A’, and the inverse of the transpose is A™".

An integral transform of FBI type.
Definition 2.1. Letu €.’ (R?) and let g € #(R?)\ {0} be a window function. Then the transform
Teu:R* — Cis
Teu(x, €)= 2m) " (u, TcMeg), x,E€RY. 2.2)
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If ue S(R?), then Tgue S (R*) (Ref. 5, Theorem 11.2.5). The adjoint T;" is (7, U.f)

=(U,THforUes "(R*?) and fe S(RY). When U is a polynomially bounded measurable function,
we write

T U() = @r) /R UG O TMeg(y) dxdé,
where the integral is defined weakly so that (7, U, f) = (U, Tof )2 for f € 7 (RY).
Remark 2.2. For ue . #(R?), we have

Teu(x, &) = (2m)™4? / u(y) e O g(y — x) dy = " F(u T,)(é).
Rd

The standard, L2-normalized Gaussian window function on R? is denoted Yox)=n"4 4= xlP/2,

Proposition 2.3 (Ref. 5, Theorem 11.2.3). Let ue.”/(RY) and ge.”(R?) \ 0. Then
Teue C™(R?%) and there exists N € N that does not depend on g such that

| Tou(x, ) S (x, ENY,  (x,€) eR¥. (2.3)
We have u € .#(R?) if and only if for any N € N,
| Toux, )] S, 7N, (x, &) eR™. 2.4)

Remark 2.4 (Relation to other integral transforms.) The transform 7, is related to the short-time
Fourier transform (cf. Ref. 5)

Veu(x, ) = Qo) P (u, M¢Tig),  x,& R
(for the Gaussian window g = ¢ also known as the Gabor transform) via
Tou(x, &) = eV u(x, £).

For the standard Gaussian window, (2.2) may be expressed as

Toatt(x, €) = 1) 2% (uw wo)x — i€) = Bux — i) e PRI, (2.5)

where 3 stands for the Bargmann transform.’
We have for two different windows g, h € . (RY),

T Teu=(hgu,  ue s (RY, (2.6)

and consequently, || gIIL‘227;‘7;,u =y for g€ SR\ 05 If (h, g) # 0, the inversion formula (2.6) can
be written as

wf)=h g (T, Thf),  ueS'RY, fe AR

Two important features of 7, which distinguishes it from the short-time Fourier transform are
the following differential identities:

O Teu(x, ) = To(0"u)(x,€),  aeN, 2.7)
DETu(x, )= Touu(x, ), BEN',  gp(0=(=x/gx). 2.8)

As described in Ref. 5 for the short time Fourier transform, (2.6) may be used to estimate the
behavior of 7, under a change of window. The following version of this result takes derivatives into
account:

Lemma 2.5. Let ue.?'(RY) and let f, g, h € S(R)\ 0 satisfy (h, g) # 0. Then for all, a, B € N
and (x,¢) € de,

1020 Tru(x, )] < )P \(h, )70 Toul * | Ty hl(x, ). 2.9)
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Proof. We obtain from (2.6)
Tru=(h, &) " T T, Teu. (2.10)

We may express 777, Tyu as
T Ty Teux, €) = @m) ™ (Tgut, Ty(TMef )

=2n)™ /R y Teu(y, n) (TyMyyh, T-Mgf) dy dn

=) / y D Tou(y, ) Trh(x =y, € — ) dydy
R

— 2 [ S T =) T € = )y
]RZ

Combining (2.7), (2.8), and (2.10) yields
O D Tyu(x, &) = 2m) P (h, g)™! /R MO Touy, 1) Ty h(x = y.€ = ) dyd.

Taking absolute value gives (2.9). |

A. Transformation under shifts and symplectic matrices

A pseudodifferential operator in the Weyl quantization is for f € .7(R?) defined as

a"(x, D)f (x) = /R LT ax /2,6 f() ag dy, @10

where a is the Weyl symbol. We will later use Shubin symbols, but for now it suffices to note that
the Weyl quantization extends by the Schwartz kernel theorem to a € .%”(R>?) and then gives rise to
a continuous linear operator from LR to .(RY).

The Schwartz kernel of the operator a” (x, D) is

Ka(x,y) = /]R €T alw+y)/2,6) a (2.12)

interpreted as a partial inverse Fourier transform in . ’(Rz‘i) when a € . ’(RM).

The metaplectic representation®'® works as follows. To each symplectic matrix y € Sp(d, R)
is associated an operator u( y) that is unitary on L%(R%) and determined up to a complex factor of
modulus one such that

pOO '@, Dy p(x) = (@ o x)”(x,D), ae S (R™) (2.13)

(cf. Refs. 4 and 6). The operator u( y) is a homeomorphism on .#’and on ..

The metaplectic representation is the mapping Sp(d, R) > y — u(y). Itis in fact a representation
of the so-called 2-fold covering group of Sp(d, R), which is called the metaplectic group.

In Table I, we list the generators y of the symplectic group, the corresponding unitary oper-
ators u(y) on u € L2, and the corresponding transformation on Tgu, cf. Ref. 3. We also list the
correspondence for phase shift operators. Here xq, &y € RY, Ae GL(d,R), B € M x4(R) with B = B'.

The proofs of the claims in Table I are collected in the following lemmas.

Lemma 2.6. Let uc ' (RY) and g € S(RY)\ 0. If (x0,&0) € T*RY, A € GL(d, R), B € Mgxa(R)
is symmetric, v(x) = eéo"Bx)u(x), and gp(y) = e_5<y’3-">g(y), then for (x, &) € T*RY,
Te(TyMe, u)(x, &) = 00 Tou(x — xo, & — &),
T (A A 1)(x, &) = |A] V2 Ty1e u(Ax, A7),
Tev(x, &) = e%<X’Bx>7;Bu(x, & — Bx).
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TABLE I. The metaplectic representation.

Transformation Action on

(x,&) e T*RY
u e L2(RY)
Teu(x, &) € L2(R*)

(A1, A'E)
Coordinate change IAIY2A*y
A 2T, . u(Ax, AT E)

(&, —x)
Rotation 7t/2 Fu

ST, u(—£.3)

(x, & + Bx)
Shearing 3B u(x)

eé<x’Bx>7:qB u(x, & — Bx)

(x +x0, & + £o)
Shift TyyMgyu
el(‘foﬂ—x())']'gu(x —x0,& — &)

Proof. The first and the fourth entry of Table I are immediate consequences of Definition 2.1.
For the third identity, assume first u € #(R?). Then

Teo(x, €)= (2m)~"* / 80 =0 e 0Pyt dy
R

— (27)"4/2 o5 x.Bx) — ) o~ 5 O-x.BO-x)) i(x—y,&—~Bx)
2m)~"e ” gy —x)e2 u(y)e dy
= e%<x’3x>723u(x, & — Bx).
The formula extends to u € .7/ (R%). O
Finally we prove the claim for “Rotation 7/2” in Table L. For later use, we prefer to show a more
general result for a possibly partial Fourier transform.
Lemma 2.7. If ue ' RH,0<n<dand x=(x1,x2) € R, x; eR", x e R, then
Teu(x1, %2, €1, €2) = €T 2 Fou(xy, &9, €1, —X2).
Proof. .
T  Foulnt, €, 61, —x2) = P Q) A (Fou, Ty £ My -, F28)
=2y 2w, F5' T, £, Mg, vy F28)
=20 P, Ty ;Mg £,8).
m|
Remark 2.8. The extreme cases n = 0 and n = d represent .%, = .% (the full Fourier transform)
and the trivial case .%, =1 (the identity), respectively.

We observe that up to certain phase factors, changes of windows and sign conventions, the
“Action on Tgu(x, £)” reflects the inversion of “Action on T*R?” in Table 1.
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lll. CHARACTERIZATION OF SHUBIN SYMBOLS

We first recall the definition of Shubin’s class of global symbols for pseudodifferential
operators.'’

Definition 3.1. We say that a € C®°(R?) is a Shubin symbol of order m € R and parameter
0< p<1,denotedac I“Z‘(]Rd), if there exist C, > 0 such that

10%a(z)] < Colz)" P, aeN!, zeR4 (3.1)

The space I} (R?) is a Fréchet space equipped with the seminorms Py (a) of best possible constants
C, in (3.1) maximized over lal < M, M € N. We denote I""(R?) =T""(R).

Obviously Fﬁ(Rd) c . (RY) so Proposition 2.3 already gives some information on 7,a when
ae F;)"(Rd). The following result, which is a chief tool in the paper, gives characterizations of T,a
for a e T"(RY).

Proposition 3.2. Suppose a €.’ (RY). Then a € F[’J"(Rd) if and only if for one (and equivalently
all) ge SRH\ 0,
1000 Tealx, Ol s " Plele™, N>0, @ peN’, x.geR! (3.2)
or equivalently

100 Tea(x, £)] s "1™, N0, aeN’, xgeR? 3-3)

Proof. Letace FZ’(]Rd), letge y(Rd) \0,and leta, B,y € N? be arbitrary. We seek to show
€05 9% Tealx, )] 5 ("1,
To that end, we use (2.7) and (2.8), integrate by parts, and estimate using (2.1) and the fact that g € .,
16707 6 Tea(x, £)| =|€ Tgs (07 a)(x, &)

=(2m)™?

/R (0,77 g5 () 9 atx +y) dy‘

< /R" |6y7 [m@"a(x+y)]| dy

:/Rdz

Ky

s 3 (0) Lolosas] e eriesay

K<y

dy

(Z)ay‘“gﬁ@) d**a(x +y)

Syl Y (Z) /R 78] lmieiaelay

Ky

< <x>m—pltt|_

This implies (3.2) and as a special case (3.3).

Conversely, suppose that (3.3) holds for a € . "(R?) for some ges (R9) \ 0, which is a weaker
assumption than (3.2). We obtain from (2.6) that a is given by

a@y) =ligll;3 T; Tea(y)

=llgll;z @m) "2 /]R , Tea@.£) €77 g(y —x) dx d,
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which is an absolutely convergent integral due to (3.3) and the fact that g € .#(R?). We may dif-
ferentiate under the integral, so integration by parts, (3.3) and (2.1) give for any & € N and any
yeR?

[0%a)] = llglF @m)~" /R Tea(x, £) 0 (€77 gy ) da dg‘
= llgll 7 @m) =/ /R L Teae, &) (=09 (€€ g(y ~ ) dx d(f‘

=llgllz @m)~" /R , O Teax, £) €€ gy - x) dx df‘

=llgll7 2m)~? / 07 Tealy — x,€) €4 g(x) dxdf‘
de
< [ omnmrele g arag

< (yrelel / & ()Ml o) dx dé
RZ(I

< <y>m—p|tt|_
Thus a € T7'(RY). O

Remark 3.3. Tt follows from the proof that the best possible constants in (3.3) maximized over
lal < M yield seminorms pZ’MN, M,N €N, on F/’)”(]Rd) equivalent to p;"fl, M eN.

We will next reformulate the characterization of I"(R¢) in a more geometric form.

Proposition 3.4. Let ac.?'(R?). Then ac "(RY) if and only if for one (and equivalently all)
g€ SR\ 0andall N,k €N,

L1+ LTea(x, O S 0™E™N, (x.6) e TR, 3.4

for any vector fields of the form L; = x;0,, where 1 <j,n<d,i=1,... k.

Proof. We may write

Li---Ly= Z Ca,ﬁxaaﬁ, Cap € R,
l|=1B1<k

and all differential operators of this form are linear combinations of products of the vector fields L;.
Ifae Fm(Rd), then the estimates (3.3) hold for any g € Y(Rd) \ 0. For N, k € N, we have

Ly LTga, Ol Y 0 Teatx, €)]
l|=1BI<k

< oymEy™v,

which confirms (3.4).
Suppose on the other hand that the estimates (3.4) hold for some g € .7 (RY)\ 0 and N,k €N,
then for any a, S € N? such that lal = IBland N e N,

@8 Tea(x, £)] < (xy"&)~™N.
This gives using |x|/! <dP1? max 4= 5 1?1,
| Teax, )l s " BUeH™, xI>1, ¢eRY.

In order to prove (3.3), which is equivalent to ael’ ’”(Rd), it thus remains to show that
(f)N |6f Tea(x, £)| remains uniformly bounded for Ixl < 1 and é € Rd, for any N € N. For that we
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estimate

ENITeate, 1 =N | D Caplit) Tos-agalx, €)

a<f

PN Y [ Tagalx, €)] .

a<f
By Lemma 2.5, we have
[Tougate, )| < ([ Tal  * | Towgg 1) (x, €) < 0",
S(xymgy™ e

where the last inequality follows by Peetre’s inequality (2.1) applied to the convolution. Choosing
M > 1Bl + N, we obtain

&N

which proves the claim. O

K Tea(x, &) 51 for x| <1, &£eRY,

Remark 3.5. The vector fields x;d;, play a role in spanning all vector fields tangential to
{0} x RY C T*RY, see Ref. 6, Lemma 18.2.5.

A. Classical symbols

An important subclass of the Shubin symbols are those that admit a polyhomogeneous expansion,
the so-called classical symbols. A symbol a € I'™ (Rd) is called classical, denoted a € I" g’l‘(Rd), if there
are functions a,,_;, homogeneous of degree m — j, and smooth outside z =0, j =0, 1, ..., such that

for any zero-excision function y, meaning y =1 — ¢ with ¢ € C° (R%) and ¢ = 1 near zero, we have

forany N e N,
N-1

a-x Z am-j € =N (R,
j=0
By Euler’s relation for homogeneous functions, # is homogeneous of degree m if and only if
Ru = mu, where R is the radial vector field Ra(x) = (x, Va(x)). Adapting the method of Joshi’
gives the following characterization of classical Shubin symbols.

Proposition 3.6. A symbol a € T"(R?) is classical if and only if for all N € Ny,
(R-m+N-1DR-m+N-2)---(R—m)acT"N®RY).

The transformation a — Tga does not preserve homogeneity. Nevertheless (2.7) and (2.8) give
the relation

Tz (Ra) (x, &) = (x + iV, V) Tgalx, €) =: RTga(x, £).

Corollary 3.7. Let ae .’ (R%) and g € SR\ 0. Then a € FZ’I’(R‘I) if and only if
|02 (R=m+N - DR =-m+N=2)--- R - mTea(x,£))| s " Vleley™, (35)

foranyM > 0,N eNy, a € N, and (x, &e T*RY,

Proof. By Proposition 3.6, a € F;’I’(Rd) if and only if
(R-m+N-1)R-m+N-2)---(R-m)yacI"™NRY.
By Proposition 3.2, this holds if and only if for all @ € N%, (x,&) e R*, and M > 0
08 Te (R—m+N = 1DR=-m+N=2)---(R—m)a)(x,£)|  (xy" Nelg)™.

This is equivalent to (3.5). m|
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IV. CHARACTERIZATION OF PSEUDODIFFERENTIAL OPERATORS

Whena e F/’)"(RM ), the pseudodifferential operator a (x, D) is continuous on .%(R¥) and extends
to a continuous operator on .’ (Rd). 17 The formulas (2.11) and (2.12) can be interpreted as oscillatory

integrals if 0 < p < 1.
Lemma 4.1. Let acT"(R*) and g € S (R*)\ 0. Then, for (z.{) = (z1.22: {1, &) € TR,

u+ H-0
)

TeKa(z, §>=(2n>—d/2’rha( 0+ Gzp — 2 | e2tGmfna), 4.1)

where h=.%,(g o k), k(x,y) = (x + y/2, x — y/2), and x,y € RY.
Proof. The statement (4.1) can be rephrased as

TeKa (Zl Z;,Zl + =40+ é =1+ {2) Q) Tha (21, (15 Lo 22) €163,

for all (z1,22; {1, £2) € T*R*!. We have K, = (21)~%/*(#,"a) o k™! which gives

z g g
EKa(Zl 22711+— §1+?2 —§1+72)

=@ (AR ok T g 3 M, o 08 (4.2)

— (27T)_3d/2(a J’z(T 1_; i+ 2M§]+%2’_§I+%2g 0 K)).
We calculate

a2 o .
Cm) =T, _2 eM, o ,08°00.m)

=72t

- /Rd Tzl_l 2t ZMSVI"' 1+'(—2g o K(y7 M)g"(“J]) du

2

:/ e(<§1+ 2 bz D+ 2yt =B - <un>)
]Rd
u 22 u
X t-—g+=,y-—=——-z1——=]d
g(y  TUTYTo A 2) "

. o . _ u Z2 u Zz
_ (GG m)/ o-ien=c) ( L R __)du
od AU R U A I )

zei@l,Zz)ei({z,y—Zl)/ e—i<u—12,77—{1>g (y -+ = ’y 71— Z) du
R4 2 2

= (2m)Y/2i46122) (=K 206D Z (g 0 )y — 21,7 — 1)
= m) P DT, (M, 2, Fag © )0, 1).

Insertion into (4.2) gives the claimed conclusion. |

Definition 4.2. For u €.’ (R*?) and g € .#(R*?) \ 0, we denote
Tou(zi, 20,1, ) =€ X230 Tu(zy 2, 00, 0),
for (21,2241, &) € T"R™.

As a consequence of Proposition 3.2, we obtain the following characterization of the Schwartz
kernels of Weyl quantized Shubin operators.
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Proposition 4.3. Let K € .7"(R*)). Then K is the Schwartz kernel of an operator of the form
(2.11) witha e I“l’f(RZd) if and only if for all &, B € N? and N €N and any g € S(R*%)\ 0, we have

10z, +0:,)" (g, — 0P TK (21,22, 41 40| S 4G + 22,81 = L))" P12y — 20, 40 + )7V,
(@1, 22: 01, ) € TR 4.3)

Remark 4.4. Corresponding to Proposition 3.4, we may rephrase the estimates (4.3) for I""(R>?)
as

ILy - LT3 K (21,22, £ ) S @1+ 22,80 = )Y@ — 22, L+ )7,

where L; are differential operators of the form
Li=(z1j +22)(0y,, +0,,), Li=(z1j +22))0z, — 01,
Li=({1j = 02j)0,, +0,,), or Li=({1j = 02j)0s, — 05,)s
forl <j,n<dand 1 <i<k
Proposition 4.3 may be phrased in terms of the Schwartz kernel K7, 4w (x,py7,+ of the operator
Tea”(x, DYT, for a € T(R*). Let u,v € #(R?) and g, h € #(R?) \ 0. On the one hand,
(@ (x, Dyu,v) = llgll 7| 2ll 3 (Tea® (x, DYT, (Thu). Tv)
= llgllZ 1l 3 (K7 py7+> Tev ® Tt
and on the other hand,
(a@”(x, Dy, 0) = (K, v ® 0) = gl A1 2 (T g Kas T (0 ® )

Since L
(Tev ® Th)(z1, £1, 22, £2) = Ty 7,0 @ U)(21, 22, {1, =02),

this proves the formula

KE(I"’(X,D)E* (Zh évla 22, _{2) = T

g®ﬁKa(Zl 5225 41 > {2) (4’4’)

In view of the last identity and Proposition 4.3, we have the following result. Tataru (Ref. 18,
Theorem 1) obtained a version of this characterization in the special case I'’, and @ = 8 = 0.

Corollary 4.5. We have a € F;’,’(de) if and only if for all @, BN and N €N and any g, h e
SR\ 0,
(aZl + 6@)&(64I _ 6{2)5 (g_éQl—ZzJ;l _§2>K7;aw(x,D)77f (Zl’ {1 , 22, —(2))‘

(@ +22, 0 = " P PN — . G+ )Y, (2,254, 0) e T'RM. (4.5)

A. Continuity in Shubin—-Sobolev spaces

As an application of the previous characterization, we give a simple proof of continuity of Shubin
pseudodifferential operators in isotropic Sobolev spaces. The Shubin—Sobolev spaces Q*(RY), s € R,
introduced by Shubin'? (cf. Refs. 5 and 12) can be defined as the modulation space MZ(R?), that is,

Q'R ={ue. S (RY): (Y TueLX(R*)),
where g € Z(RY) \ 0 is fixed and arbitrary, with norm
luelige = [[¢-) Teut|

The characterization of Shubin pseudodifferential operators given in Proposition 4.3 yields a
simple proof of their Q*-continuity, cf. Ref. 18.

L2(R*) "

Proposition 4.6. If ae F(T(RM), then a®(x, D) : Q”’”(Rd) - QS(Rd) is continuous for all s € R.
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Proof. Set A =a"(x, D). We have for u € O (RY),

lAullgs = sup [(Au,v)] = sup [(K7, a7y Tyo0 ® Tyow)l
veQ=* veQ=* 0
= sup [(()' ® (YK aty s O Tyov @ O Tyeu)l-
veQ™* 0" o —_—— ——
cl? (RM) cl? (Rz‘l)

It remains to show that
(@1, QY (=2, )" Ky a1y (21561522, £2) (4.6)

is the Schwartz kernel of a continuous operator on L? (R4,
First we deduce from (4.4), Proposition 4.3, and (2.1) the estimate for any N € N,

(1, QY (=2, )" IK7 a7 (21,415 22, )
={(z1, {22, 020~ " Ty Ka(z1, 22, {1, = 00)
@1 ) (@2, )™ @ + 22, G + )@ = 22,6 = )7
S (@2, 02 @1 ) + (22, )Y 4) = (@2, )P
(@1, 41) = (22, )P
Then we apply Schur’s test which gives, for N > 0 sufficiently large,

/RM |((Zl,§1)>s<(22,52))_5_"1Kn0A7;()(21,51,22,52)' dz;ddy <1,

L an e en i @00 0] dnda <.

This implies that (4.6) is the Schwartz kernel of an operator that is continuous on L2(R*?). |

V. I-CONORMAL DISTRIBUTIONS

The kernels of pseudodifferential operators with Hormander symbols are prototypes of conormal
distributions, see Ref. 6, Chap. 18.2. We introduce an analogous notion in the Shubin calculus. Before
giving a precise definition, we make some observations to clarify our idea.

Proposition 4.3 may be rephrased using the diagonal and the antidiagonal

A={(x,x)eR¥: xeRY}, At ={(x,—x) e R*: x e RY)

considered as linear subspaces of R?. Denoting Euclidean distance to a subset V by dist(-, V), we

have
. . X —
dist(Cx,y), &) = inf [00)) = @2l = 2 y) e R,
zeR? \/5
and dist((x, y), A1) ) =[x + y|/V2 for (x,y) e R,
The inequalities (4.3) can thus be expressed, for (x, &) € T*RM, as

L1 LTRK (e, ©)] 5 (14 dist((e, ). NA )" (14 dist((, . N ™Y, (5.1

where N(A) = A x AL € T*R*? and N(A+) = A+ x A € T*R?*? denote the conormal spaces of A and
A*, respectively, and
L;=(bj,V.¢) (5.2)
is a first order differential operator with constant coefficients such that b; € N(A),j=1,2, ..., k, and
k,N eN.
Observe that in (5.1) we may substitute N(A1) by any linear subspace transversal to N(A), that
is, any vector subspace V C T*R?? such that T*R?>? = N(A) & V. Note also that

1
§<X1 —x2,&1 — &) =(mArx, &),
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In the following, we generalize (5.1) by replacing the diagonal A by a general linear subspace,
and the dimension 24 is replaced by d. For simplicity of notation, we work with p = 1 but this can be
generalized to 0 < p < 1.

Definition 5.1. Suppose ¥ CR? is an n-dimensional linear subspace, 0 < n < d, let N(Y)
=Y x Y+, and let V C T*R? be a d-dimensional linear subspace such that N(Y) @ V = T*R?. Then
ue.(R?% is I-conormal to Y of degree m € R, denoted u € I{?(Rd, Y), if for some g € FRH\ 0
and for any k, N € N, we have

} Ly LT u(x, g)) < (1 +dist((x, &), V)" F (1 +dist((x, &), NOV) ™V, 5.3
(x,&) e T*RY, '

where
7;/”()(, E) — e—i(ﬂnysff)'];u(_x’ f), ()C, f) c T*Rd,

and L;, j =1, ..., k are the first order differential operators defined by (5.2) with b; € N(Y).

For a fixed g€ . \ 0, we equip I{!’(Rd, Y) with a topology using seminorms defined as the
best possible constants in (5.3) for N, M € N fixed, maximized over k < M and all combinations of
b; € N(Y) belonging to a fixed and arbitrary basis.

As observed, the definition is independent of the linear subspace V as long as N(Y) @ V = T*R¢,
and often it is convenient to use V = N(Y)* = N(Y*). We will also see that the definition and the
topology do not depend on g € .#(R%) \ 0 (see Corollary 5.8).

If we pick coordinates such that Y =R” x {0} C R?, then

N(Y)={(x1,0,0,&): x1 eR", & eRI™) C TR,
N ={(0,x2,£1,0): xp e R, & eR"} C TRY.
We split variables as x = (x,x2) € R?, x; € R", and x, € R?™". The inequalities (5.3) reduce to
0602 (7> Tou(x, )| 5 (Ger €)™ P02, £0) 7Y, (54)

foraeN", Be N?"_ and N € N.

Example 5.2. By Proposition 4.3 and (5.1), we have
MR, A) = {K, € &' (R*):a e T (R*)).
Example 5.3. Write x = (x1, x2), x; € R", x, eRY™ and consider u=1 ® 9 €./ (R%) with
le./(R") and &p€.”(R?™). The distribution u is a prototypical example of a distribution

I'-conormal (and also conormal in the standard sense of Ref. 6, Chap. 18.2) to the subspace R" x {0}.
It is a Gaussian distribution in the sense of Hormander® (cf. Ref. 13). A computation yields

Tﬁo”(x’ &)= (271.)—{1%" ﬂ.—% ei<xz?§2>e—%(lxz P+1& IZ)’

so the inequalities (5.4) are satisfied for m = 0. In particular 60(]Rd) € Il(.)(Rd, {0}).
Next we characterize the conormal distributions of which the latter example is a particular case.
Again we denote x = (x1,x2) € R?, x; e R", and x, € R,

Lemma 54. If ue Y’(Rd) and 0 <n<d, thenue I;”(Rd, R" x {0}) if and only if

u(x) = (2m)~ /2 /

Rd—)

29 q(x1,0) do,
for some a € ["™(RY), that is u = %la.

Proof. Let g €.#(R%)\ 0. By Lemma 2.7, we have

Teu(x1, %2, €1, ) = €T 5 Pou(xy, &, &1, —x2).
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Set a=.%ue.? (RY). Proposition 3.2 implies that a eI"™RY) if and only if the estimate (5.4)
hold for all for @ eN", BeN?™" and NeN. By Definition 5.1, this happens exactly when
ue IR, R" x {0}). O

The extreme cases n =0 and n = d yield

Corollary 5.5. I"(R?, {0}) = FT™(R?) and I"(R?,R?) =T"(R?).
The proof of Lemma 5.4 gives the following byproduct.

Corollary 5.6. The topology on I{."(Rd, R x {0}) does not depend on g.

The next result treats how I'-conormal distributions behave under orthogonal coordinate
transformations.

Lemma 5.7. If Y CR? is an n-dimensional linear subspace, 0 < n < d, and B € O(d), then
B*: I;"(Rd, Y)— IIC"(R‘I, B'Y) is a homeomorphism.

Proof. Let ge.7(R%) \ 0. We have
Te(B*u)(x, §) = Thu(Bx, BE),
where h = (B")*g € ./(R?). From this and n(gry): = B'my1 B, we obtain
TEY B u)(x, €) = T, u(Bx, BE),
so B*u e IF’(Rd, B'Y) follows from Definition 5.1, N(B'Y) = B'Y x B'Y~* and
dist((Bx, B&), N(Y)) =dist((x, £), N(B'Y)),  (x,&)eT*R.

It also follows that the map u — B*u is continuous from If”(Rd ,Y)to I{."(Rd, B'Y) when the topologies
for I{P(R‘i, Y) and IIC”(Rd, B'Y) are defined by means of & € . and g € ., respectively. O

If we combine Lemma 5.7 with Corollary 5.6, then we obtain the following generalization of
the latter result.

Corollary 5.8. If Y CR? is an n-dimensional linear subspace, 0 < n < d, then the topology on
IF"(R“’, Y) does not depend on g.
We can also extract the following generalization of Lemma 5.4 from Lemma 5.7.

Proposition 5.9. Let 0 < n < d and let Y CR? be an n-dimensional linear subspace. Then
ue . (RY) satisfies u e Il’.”(Rd, Y) if and only if

u(x) = e Mx9 g (M x, 6) 6, (5.5)
Rdfn
for some a € Fm(Rd), where My € M gyx(a-n)(R) and M1 € Myx,(R) are matrices such that Y = Ker Mé
and U =[M; M,] € GL(d, R).

Proof. 1f ueIF"(Rd, Y), then we can pick U = [M| M;] € O(d) where M| € Myy,(R) and
M) € Myx@-n(R) such that ¥ = Ker M’, which implies that U'Y =R”" x {0}. By Lemma 5.7, we
have U*u € If"(Rd, R”™ x {0}), and (5.5) with a € I"(R?) is then a consequence of Lemma 5.4.

Suppose on the other hand that (5.5) holds for a e ["™(R?) and U =[M; M>]€GL(d,R). Set
Y= KerMé. We may assume that U = [M| M>] € O(d), after modifying a € F’”(]Rd) by means of
a linear invertible coordinate transformation, which is permitted since I is invariant under such
transformations. By Lemma 5.4, we have U*u eIl’_”(Rd,R” x {0}), and Lemma 5.7 then gives u €

MR y). O
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Since
() @®Y = 7R,
meR

we have the following consequence.
Corollary 5.10. If 0 < n < d and Y CR? is an n-dimensional linear subspace then
SRYCIMRY,Y).
We also obtain a generalization of Lemma 5.7.

Corollary 5.11. If Y C R? is an n-dimensional linear subspace, 0 < n < d, and B e GL(d,R)
then B* : I?’(Rd, Y)— IIC"(Rd, B~'Y) is a homeomorphism.

Proof. By Proposition 5.9, we have u € If”(Rd, Y) if and only if B*'u € I?’(Rd, B~'Y). It remains
to show that B* is continuous. By Lemma 5.7 we may replace Y with any n-dimensional linear
subspace. Using the singular value decomposition B = UXV’, where U, V € O(d) and X is diagonal
with positive entries, the proof of the continuity of B* reduces, again using Lemma 5.7, to a proof of
the continuity of

T MR R x {0) — IMRY, R™ x {0)).

The latter continuity follows straightforwardly using the estimates (5.4). O

By Lemma 2.7 ‘
Teu(x, €) = € Tou(-¢, x),

which gives
T, €)= TN Tou(— £, x0) = T u(=€,x).

Thus it follows from Definition 5.1 that .% : I?(Rd ,Y)— I;"(Rd, Y+) continuously.

Proposition 5.12. If Y CR? is an n-dimensional linear subspace, 0 < n < d, then the Fourier
transform is a homeomorphism from I;”(Rd, Y)to I;”(Rd, Yh).

Example 5.13. If u € I"(R?,R" x {0}), then by Lemma 5.4, there exists a € ["(R?) such that

u(x) = (2m)~@mi /d

RA-

(B 0
B‘(o Bz)’

then the action of B can understood as an action on the symbol of u,

2P q(xy, 0) d.

If Be GL(d,R) and

B u(x) = (2m)~ =/ / ¢ a(Byx,, B5'0)|B,| ™" do.
Rdfn

Remark 5.14. The estimates (5.3) in Definition 5.1 can be translated to a geometric form, as in
Remark 4.4 for Schwartz kernels of Shubin operators. The result is

| Ty (6, ) My B e P T uix, €)] < (1 + dist((x, ), V)™ (1 + dist((x, £), N ™,
for @, B € N? such that lal = |8, and N € N arbitrary.
Remark 5.15. Let X be a smooth manifold of dimension d and let Y C X be a closed submanifold.

Hormander’s conormal distributions I (X, Y) with respect to Y of order m € R is by (Ref. 6, Definition
18.2.6) all u € D’(X) such that

Li...LueB,"Y*X), keN,

2,00, loc
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where L; are first order differential operators with coefficients tangential to ¥, and where Bg"z;ﬁ)/f X)
is a Besov space.

Comparing this definition with the estimates defining IIC"(Rd, Y) in Remark 5.14, we see that
the fact that we are working with isotropic symbol classes made it necessary to replace the local,
Fourier-based Besov spaces with a global, isotropic version based on the transform 7y, resembling
a modulation space.

We note that the submanifold Y is allowed to be nonlinear in /(X Y), as opposed to the linear
submanifold ¥ C R we use in I'-conormal distributions I{P(Rd, Y).

A. Microlocal properties of '-conormal distributions

The wave front set of a conormal distribution in /”*(X, Y) is contained in the conormal bundle of
the submanifold Y (Ref. 6, Lemma 25.1.2).

The wave front set adapted to the Shubin calculus is the Gabor wave front set studied, e.g., in
Refs. 7, 11, and 14-16, see also Ref. 2. It can be introduced using either pseudodifferential operators
or the short-time Fourier transform. In the latter definition, one may replace Vyu by 7,u since they
are identical up to a factor of modulus one.

Definition 5.16. 1If ue.”’(R?) and ge.(R?) \ 0, then (xo, &) € T*R? \ 0 satisfies (xo, &)
¢ WFg(u) if there exists an open cone V C T*R7\ 0 containing (xg, o) such that for any N € N there
exists Cy o v > 0 such that | Tgu(x, £)| < Cy g v{((x, €)™Y when (x, £) € V.

The definition does not depend on g € y(Rd) \ 0. The Gabor wave front set transforms well
under the metaplectic operators discussed in Sec. II, cf. Ref. 7, that is,

WFEg(u(x)u) = x WEcw)), ue (R, xeSpd,R).

Proposition 5.17. Let Y C R? be an n-dimensional linear subspace,0 <n<d Ifue IF“(R‘!, Y),
then

WFg(u) SN(Y).
Proof. Suppose (x, £) ¢ N(Y). This means (ryrx, n1y€) #0, so (x, &) € V where the open conic
set V C T*RY is defined by
V={(x,&) e T'R: |(mryx, nys )| < Cl(myrx, myé)l},

for some C > 0. Using
|0, OF = |Gy x, 7wy )1 + |(yex, ay )1,

dist(x, Y) = |myox|, dist(x, Y1) = Iryxl, and
dist?((x, &), N(Y)) = dist>(x, ¥) + dist>(&, Y1),

the result follows from Definition 5.1 (with trivial operators L;). |

Corollary 5.18. If ae Fm(RZd) and a”(x, D) has Schwartz kernel K ,, then
WEFEg(K,) CN(A) C T*R*.

It is well known that Shubin pseudodifferential operators are microlocal with respect to WFg,
that is, if @ € I"(R*?) and u € .7/ (R?), then

WFg(a® (x, D)u) C WFg(u),

see, e.g., Refs. 7 and 16. We show that they also preserve I'-conormality.

Proposition 5.19. Let Y CRY be an n-dimensional linear subspace, 0<n<d. If a €I (R*?),
then a®” (x, D) is continuous from I{?(Rd, Y) to Il’lﬁml(Rd, Y).
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Proof. Ifa eI (R*)and U € O(d), then we have by symplectic invariance of the Weyl calculus
(2.13)

Uh*a® (x,D)U* =b"(x, D),

where b(x, &) = a(U'x, U'&) e T (R?%). By Lemma 5.7, we may therefore assume that ¥ =R” x {0}.
The symplectic invariance also guarantees that

F5 b (x, D)., = ¢ (x, D),

with e(x, &) =b(x1, &, &1, —x2) € I (R??) where x = (x1,x2) € RY, x; € R”, and x, € R*™. To prove
a®(x,D)u e IF””" (R, R" % {0}) fora e "™ (R*) and u € I (R, R" x {0}) is therefore by Lemma 5.4
equivalent to proving that a¥(x, D)yu eI’ mm'(R4Y for g € I™ (R*?) and u € I"(RY).

Let aeI™ (R*), uel™(RY) and set A = a®(x, D). By Proposition 3.2, it suffices to
verify

|08 TypAu(x, )] s Y™™ 71N Ey ™, (x,6) e T'RY,
forany N > 0 and « eN¢,

Let N > 0 and @ € N¥. Writing Ty, Au = (TyyATy,) Tyu and using (4.4), we are thus tasked with
estimating ;¥ acting on

Ty Au(x, &) = / TyoKa(x,y, &, =) Tyou(y, ) dy dn
R (5.6)

= /RM 2 Y&+ mKa(x,y, £,-n) 77//0“(% 1) dydn.

The integral (5.6) converges due to the estimates
108 Tyou@y. )l s Y"1l ay™, yneR?, aeN!, N3>0,

which follows from Proposition 3.2, and the estimates

(B + 0) T Ka(x, 3. &, —m| S ((x + 3, £ + )" TN (x =y, £ =)™,
x,y,f,neRd, aENd, N=>=0,
that are guaranteed by Proposition 4.3.

Writing d,; =y, + 0y, — 9y, for 1 <j < d and differentiating under the integral in (5.6), we obtain
by integration by parts for any N, N» > 0,

|02 Tg,Au(x, )|

=36 ‘ [ 040 (8 TR mm)) 7 Tt dn‘

B<a

=G ‘ /R €O (34 6P T Ka(x, y, &, =1) 6P Tyqu(y. ) dy dn‘
B<a

< 3 [ N0+ P TR .- 0 Tyt dyan,
pLa

S /de“x +y, £+ PN =y, & =)y Gyl Py dy dn.
B<a

Finally we estimate
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/]RZd«X +y,&+ n»m’—lﬁl«x -y, &- n))—Nl <y>m—|a—,8\<n>_N2dy dn
) /de«zx 3,26+ )" ROV G+ Py + 6 Nedy

< / <x>m'—|ﬁ|<y>Im'|+\B|<§>\m'|+|,3\<n>|m'|+|ﬁ|<(y’ n)>—Nl <x>m—\(l—ﬁ|
R
x (el yNady dy
S <x>m/+m—|(l|<§>|m'|+\af|—N2 /RM <y>|m’|+|m|+2\a\<n>|m/|+|(l|+N2<(y, n))—N] dy dl]
< <x>m'+m— || <§;>—N’

provided N1 > Ny + 2lm’l + Iml + 3lal + 2d and N2 > N + Im’l + lal.
This proves

O Ty Au(x, )] < oy kg™, (x,£) e TR

and as a by-product of these estimates, we obtain the claimed continuity. O

Remark 5.20. The proof shows that the result can be generalized. If a€ Fgl(RZd) and
wel (R?,Y)thena” (x, Dyue I (R?,Y),for0< p < 1.Here I (R?,Y)is defined as in Definition
5.1 with the modified estimate

(1 +dist((x, &), V))"P* (1 + dist((x, &), N)) ™

in (5.3).
Since Proposition 5.19 shows how I'-conormality is preserved under the action of a pseudodif-
ferential operator, we obtain the following result on conormal elliptic regularity:

Corollary 5.21 (Conormal elliptic regularity). Suppose u € .#'(R?) solves the pseudodifferential
equation a® (x, D)u = fwith f € I{."(Rd, Y) where a e T (R*?) is globally elliptic, that is, satisfying

la(x, £)| = C{(x, £)™, I(x, &) = R, (5.7
for C,R > 0. Then ue "™ (R4, Y).

Proof. Under condition (5.7), a“(x, D) admits a parametrix p®(x, D) with peI'™ and
p¥(x, D)a®(x, D) = I + R, where R is continuous .” —.%.!'7 Then u = p*(x, D)f — Ru and hence
uelm" R, Y). O
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