391 research outputs found

    Looking at cosmic near-infrared background radiation anisotropies

    Get PDF
    The cosmic infrared background (CIB) contains emissions accumulated over the entire history of the Universe, including from objects inaccessible to individual telescopic studies. The near-IR (~1-10 mic) part of the CIB, and its fluctuations, reflects emissions from nucleosynthetic sources and gravitationally accreting black holes (BHs). If known galaxies are removed to sufficient depths the source-subtracted CIB fluctuations at near-IR can reveal sources present in the first-stars-era and possibly new stellar populations at more recent times. This review discusses the recent progress in this newly emerging field which identified, with new data and methodology, significant source-subtracted CIB fluctuations substantially in excess of what can be produced by remaining known galaxies. The CIB fluctuations further appear coherent with unresolved cosmic X-ray background (CXB) indicating a very high fraction of BHs among the new sources producing the CIB fluctuations. These observations have led to intensive theoretical efforts to explain the measurements and their properties. While current experimental configurations have limitations in decisively probing these theories, their potentially remarkable implications will be tested in the upcoming CIB measurements with the ESA's Euclid dark energy mission. We describe the goals and methodologies of LIBRAE (Looking at Infrared Background Radiation with Euclid), a NASA-selected project for CIB science with Euclid, which has the potential for transforming the field into a new area of precision cosmology.Comment: Reviews of Modern Physics, to appea

    The 3D soft X-ray cluster-AGN cross-correlation function in the ROSAT NEP survey

    Full text link
    X-ray surveys facilitate investigations of the environment of AGNs. Deep Chandra observations revealed that the AGNs source surface density rises near clusters of galaxies. The natural extension of these works is the measurement of spatial clustering of AGNs around clusters and the investigation of relative biasing between active galactic nuclei and galaxies near clusters.The major aims of this work are to obtain a measurement of the correlation length of AGNs around clusters and a measure of the averaged clustering properties of a complete sample of AGNs in dense environments. We present the first measurement of the soft X-ray cluster-AGN cross-correlation function in redshift space using the data of the ROSAT-NEP survey. The survey covers 9x9 deg^2 around the North Ecliptic Pole where 442 X-ray sources were detected and almost completely spectroscopically identified. We detected a >3sigma significant clustering signal on scales s<50 h70^-1 Mpc. We performed a classical maximum-likelihood power-law fit to the data and obtained a correlation length s_0=8.7+1.2-0.3 h_70-1 Mpc and a slope gamma=1.7$^+0.2_-0.7 (1sigma errors). This is a strong evidence that AGNs are good tracers of the large scale structure of the Universe. Our data were compared to the results obtained by cross-correlating X-ray clusters and galaxies. We observe, with a large uncertainty, that the bias factor of AGN is similar to that of galaxies.Comment: 4 pages, 2 figure, proceedings of the Conference "At the edge of the Universe", Sintra Portugal, October 2006. To be published on the Astronomical Society of the Pacific Conference Series (ASPCS

    Transport properties in correlated systems: An analytical model

    Full text link
    Several studies have so far investigated transport properties of strongly correlated systems. Interesting features of these materials are the lack of resistivity saturation well beyond the Mott-Ioffe-Regel limit and the scaling of the resistivity with the hole density in underdoped cuprates. Due to the strongly correlated nature of these materials, mainly numerical techniques have been employed. A key role in this regards is thought to be played by the continuous transfer of spectral weight from coherent to incoherent states. In this paper we employ a simple analytical expression for the electronic Green's function to evaluate both quasi-particle and transport properties in correlated systems. Our analytical approach permits to enlighten the specific role of the spectral transfer due to the correlation on different features. In particular we investigate the dependence of both quasi-particle and transport scattering rate on the correlation degree and the criterion for resistivity saturation. systems.Comment: 11 pages, 8 figures. New version correcting a mistake of the previous version and added figure

    Small Fermi energy and phonon anharmonicity in MgB_2 and related compounds

    Full text link
    The remarkable anharmonicity of the E_{2g} phonon in MgB_2 has been suggested in literature to play a primary role in its superconducting pairing. We investigate, by means of LDA calculations, the microscopic origin of such an anharmonicity in MgB_2, AlB_2, and in hole-doped graphite. We find that the anharmonic character of the E_{2g} phonon is essentially driven by the small Fermi energy of the sigma holes. We present a simple analytic model which allows us to understand in microscopic terms the role of the small Fermi energy and of the electronic structure. The relation between anharmonicity and nonadiabaticity is pointed out and discussed in relation to various materials.Comment: 5 pages, 2 figures replaced with final version, accepted on Physical Review

    The primordial environment of super massive black holes: large scale galaxy overdensities around z∼6z\sim6 QSOs with LBT

    Full text link
    We investigated the presence of galaxy overdensities around four z∼6z\sim6 QSOs, namely SDSS J1030+0524 (z = 6.28), SDSS J1148+5251 (z = 6.41), SDSS J1048+4637 (z = 6.20) and SDSS J1411+1217 (z = 5.95), through deep rr-, ii- and zz- band imaging obtained with the wide-field (∼23′×25′\sim23'\times25') Large Binocular Camera (LBC) at the Large Binocular Telescope (LBT). We adopted color-color selections within the i−zi-z vs r−zr-z plane to identify samples of ii-band dropouts at the QSO redshift and measure their relative abundance and spatial distribution in the four LBC fields, each covering ∼8×8\sim8\times8 physical Mpc at z∼6z\sim6. The same selection criteria were then applied to zz-band selected sources in the ∼\sim1 deg2^2 Subaru-XMM Newton Deep Survey to derive the expected number of dropouts over a blank LBC-sized field (∼\sim0.14 deg2^2). The four observed QSO fields host a number of candidates larger than what is expected in a blank field. By defining as ii-band dropouts objects with zAB1.4z_{AB}1.4 and undetected in the rr-band, we found 16, 10, 9, 12 dropouts in SDSS J1030+0524, SDSS J1148+5251, SDSS J1048+4637, and SDSS J1411+1217, respectively, whereas only 4.3 such objects are expected over a 0.14 deg2^2 blank field. This corresponds to overdensity significances of 3.3, 1.9, 1.7, 2.5σ\sigma, respectively. By considering the total number of dropouts in the four LBC fields and comparing it with what is expected in four blank fields of 0.14 deg2^2 each, we find that high-z QSOs reside in overdense environments at the 3.7σ3.7\sigma level. This is the first direct and unambiguous measurement of the large scale structures around z∼6z\sim6 QSOs. [shortened]Comment: 12 pages, 8 figures. Accepted for publication in A&

    The Contribution of z < or Approx. 6 Sources to the Spatial Coherence in the Unresolved Cosmic Near-Infrared and X-Ray Backgrounds

    Get PDF
    A spatial clustering signal has been established in Spitzer/IRAC measurements of the unresolved cosmic near-infrared background (CIB) out to large angular scales, approx. 1deg. This CIB signal, while significantly exceeding the contribution from the remaining known galaxies, was further found to be coherent at a highly statistically significant level with the unresolved soft cosmic X-ray background (CXB). This measurement probes the unresolved CXB to very faint source levels using deep near-IR source subtraction.We study contributions from extragalactic populations at low to intermediate redshifts to the measured positive cross-power signal of the CIB fluctuations with the CXB. We model the X-ray emission from active galactic nuclei (AGNs), normal galaxies, and hot gas residing in virialized structures, calculating their CXB contribution including their spatial coherence with all infrared emitting counterparts. We use a halo model framework to calculate the auto and cross-power spectra of the unresolved fluctuations based on the latest constraints of the halo occupation distribution and the biasing of AGNs, galaxies, and diffuse emission. At small angular scales (1), the 4.5microns versus 0.5-2 keV coherence can be explained by shot noise from galaxies and AGNs. However, at large angular scales (approx.10), we find that the net contribution from the modeled populations is only able to account for approx. 3% of the measured CIBCXB cross-power. The discrepancy suggests that the CIBCXB signal originates from the same unknown source population producing the CIB clustering signal out to approx. 1deg

    Comment on "Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects"

    Full text link
    We argue that the data published by the Pierre Auger Collaboration (arXiv:0711.2256) disfavor at 99% confidence level their hypothesis that most of the highest-energy cosmic rays are protons from nearby astrophysical sources, either Active Galactic Nuclei or other objects with a similar spatial distribution.Comment: 1000 words, 2 figures, scicite.st
    • …
    corecore