1,156 research outputs found

    Estimation of genetic parameters for height using spatial analysis in Tsuga heterophylla full-sibling family trials in British Columbia

    Get PDF
    Non-spatial and spatial analyses were carried out to study the effects on genetic parameters in ten-year height growth data across two series of 10 large second-generation full-sib progeny trials of western hemlock [Tsuga heterophylla (Raf.) Sarg.] in British Columbia. To account for different and complex patterns of environmental heterogeneity, spatial single trial analyses were conducted using an individual-tree mixed model with a two-dimensional smoothing surface with tensor product of B-spline bases. The spatial single trial analysis, in all cases, showed sizeable lower Deviance Information Criterion values relative to the non-spatial analysis. Also, fitting a surface displayed a consistent reduction in the posterior mean as well as a decrease in the standard deviations of error variance, no appreciable changes in the additive variance, an increase of individual narrow-sense heritability, and accuracy of breeding values. The tensor product of cubic basis functions of B-spline based on a mixed model framework does provide a useful new alternative to model different and complex patterns of spatial variability within sites in forest genetic trials. Individual narrow-sense heritabilities estimates from the spatial single trial analyses were low (average of 0.06), but typical of this species. Estimated dominance relative to additive variances were unstable across sites (from 0.00 to 1.59). The implications of these estimations will be discussed with respect to the western hemlock genetic improvement program in British Columbia.Fil: Cappa, Eduardo Pablo. British Columbia Ministry of Forests and Range; Canadá. University of British Columbia; Canadá. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yanchuk, A. D.. British Columbia Ministry of Forests and Range; CanadáFil: Cartwright, C. V.. British Columbia Ministry of Forests and Range; Canad

    Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    Get PDF
    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol

    Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 1: Assessing the influence of constrained multi-generational ageing

    Get PDF
    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation. Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA concentrations by a factor of two and are probably a much stronger determinant in 3-D models than multi-generational oxidation. While total predicted SOA mass is similar for the SOM and two-product models, the SOM model predicts increased SOA contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA contributions from isoprene and monoterpene relative to the two-product model calculations. The SOA predicted by SOM has a much lower volatility than that predicted by the traditional model, resulting in better qualitative agreement with volatility measurements of ambient OA. On account of its lower-volatility, the SOA mass produced by SOM does not appear to be as strongly influenced by the inclusion of oligomerization reactions, whereas the two-product model relies heavily on oligomerization to form low-volatility SOA products. Finally, an unconstrained contemporary hybrid scheme to model multi-generational oxidation within the framework of a two-product model in which ageing reactions are added on top of the existing two-product parameterization is considered. This hybrid scheme formed at least 3 times more SOA than the SOM during regional simulations as a result of excessive transformation of semi-volatile vapors into lower volatility material that strongly partitions to the particle phase. This finding suggests that these hybrid multi-generational schemes should be used with great caution in regional models

    The geometrical nature of optical resonances : from a sphere to fused dimer nanoparticles

    Get PDF
    We study the electromagnetic response of smooth gold nanoparticles with shapes varying from a single sphere to two ellipsoids joined smoothly at their vertices. We show that the plasmonic resonance visible in the extinction and absorption cross sections shifts to longer wavelengths and eventually disappears as the mid-plane waist of the composite particle becomes narrower. This process corresponds to an increase of the numbers of internal and scattering modes that are mainly confined to the surface and coupled to the incident field. These modes strongly affect the near field, and therefore are of great importance in surface spectroscopy, but are almost undetectable in the far field

    Vapor−Wall Deposition in Chambers: Theoretical Considerations

    Get PDF
    In order to constrain the effects of vapor–wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, researchers recently varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area (Zhang, X.; et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 5802). Using a coupled vapor–particle dynamics model, we examine the extent to which this increase is the result of vapor–wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic time scales of gas-phase reaction, vapor–wall deposition, and gas–particle equilibration. The gas–particle equilibration time scale depends on the gas–particle accommodation coefficient α_p. Regardless of the extent of kinetic limitation, vapor–wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor–wall deposition and kinetic limitations must be taken into account

    Detection of the Cherenkov light diffused by Sea Water with the ULTRA Experiment

    Full text link
    The study of Ultra High Energy Cosmic Rays represents one of the most challenging topic in the Cosmic Rays and in the Astroparticle Physics fields. The interaction of primary particles with atmospheric nuclei produces a huge Extensive Air Shower together with isotropic emission of UV fluorescence light and highly directional Cherenkov photons, that are reflected/diffused isotropically by the impact on the Earth's surface or on high optical depth clouds. For space-based observations, detecting the reflected Cherenkov signal in a delayed coincidence with the fluorescence light improves the accuracy of the shower reconstruction in space and in particular the measurement of the shower maximum, giving a strong signature for discriminating hadrons and neutrinos, and helping to estimate the primary chemical composition. Since the Earth's surface is mostly covered by water, the ULTRA (UV Light Transmission and Reflection in the Atmosphere)experiment has been designed to provide the diffusing properties of sea water, overcoming the lack of information in this specific field. A small EAS array, made up of 5 particle detectors, and an UV optical device, have been coupled to detect in coincidence both electromagnetic and UV components. The detector was in operation from May to December, 2005, in a small private harbor in Capo Granitola (Italy); the results of these measurements in terms of diffusion coefficient and threshold energy are presented here.Comment: 4 pages, 3 figures, PDF format, Proceedings of 30th ICRC, International Cosmic Ray Conference 2007, Merida, Yucatan, Mexico, 3-11 July 200

    Chickpea cooking water (Aquafaba): Technological properties and application in a model confectionery product

    Get PDF
    This study aimed at evaluating the techno-functionalities of chickpea cooking water (aquafaba, AF) produced from dry chickpeas, and investigating its application in a model confectionary product. Pasteurized egg white (EW) was used as the reference sample. The addition of guar gum (GG; 1% of AF) and acidification with lactic acid (LA; down to pH 4) were explored to enhance AF foaming capacity and stability. The presence of GG hy-drocolloid helped increase foam (F) stability (i.e., F_AFGG showed no syneresis in comparison to the 27% of F_AF) and hardness (+92% than F_AF), while acidification doubled overrun. Significantly (p < 0.05) different foaming stabilities (i.e., syneresis, geometrical indices and air bubble coalescence) up to 120 min at 6 +/- 2 degrees C were evidenced according to the foaming agent used. The technological properties of meringues made by using the different foaming agents and sucrose (ratio 1:1.64 w/w) were also investigated. The presence of hydrocolloid resulted in the highest whipped batter density (0.59 g/mL) and the lowest baking loss (30.6%) associated with intermediate water activity (0.398) and moisture content (2.40g/100g) but the lowest height (13.1 mm). Conversely, acidification improved AF performance in terms of meringue height (17 mm) and texture (3.24*10-3 J). This study proved that AF, a recycled 'waste' product, possesses interesting technological prop-erties -further enhanced by adding GG and LA -useable for plant-based food applications

    E-BOSS: an Extensive stellar BOw Shock Survey. I: Methods and First Catalogue

    Full text link
    Context: Bow shocks are produced by many astrophysical objects where shock waves are present. Stellar bow shocks, generated by runaway stars, have been previously detected in small numbers and well-studied. Along with progress in model development and improvements in observing instruments, our knowledge of the emission produced by these objects and its origin can now be more clearly understood. Aims: We produce a stellar bow-shock catalogue by applying uniform search criteria and a systematic search process. This catalogue is a starting point for statistical studies, to help us address fundamental questions such as, for instance, the conditions under wich a stellar bow shock is detectable. Methods: By using the newest infrared data releases, we carried out a search for bow shocks produced by early-type runaway stars. We first explored whether a set of known IRAS bow shock candidates are visible in the most recently available IR data, which has much higher resolution and sensitivity. We then carried out a selection of runaway stars from the latest, large runaway catalogue available. In this first release, we focused on OB stars and searched for bow-shaped features in the vicinity of these stars. Results: We provide a bow-shock candidate survey that gathers a total of 28 members which we call the Extensive stellar BOw Shock Survey (E-BOSS). We derive the main bow-shock parameters, and present some preliminary statistical results on the detected objects. Conclusions: Our analysis of the initial sample and the newly detected objects yields a bow-shock detectability around OB stars of \sim 10 per cent. The detections do not seem to depend particularly on either stellar mass, age or position. The extension of the E-BOSS sample, with upcoming IR data, and by considering, for example, other spectral types as well, will allow us to perform a more detailed study of the findings.Comment: A&A accepted (25-NOV-2011), 15 pages, 4 tables, 11 figure
    corecore