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Abstract

Non-spatial and spatial analyses were carried
out to study the effects on genetic parameters in
ten-year height growth data across two series of
10 large second-generation full-sib progeny tri-

als of western hemlock [Tsuga heterophylla
(Raf.) Sarg.] in British Columbia. To account for
different and complex patterns of environmen-
tal heterogeneity, spatial single trial analyses
were conducted using an individual-tree mixed
model with a two-dimensional smoothing sur-
face with tensor product of B-spline bases. The
spatial single trial analysis, in all cases, showed
sizeable lower Deviance Information Criterion
values relative to the non-spatial analysis. Also,
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fitting a surface displayed a consistent reduc-
tion in the posterior mean as well as a decrease
in the standard deviations of error variance, no
appreciable changes in the additive variance,
an increase of individual narrow-sense heri-
tability, and accuracy of breeding values. The
tensor product of cubic basis functions of B-
spline based on a mixed model framework does
provide a useful new alternative to model differ-
ent and complex patterns of spatial variability
within sites in forest genetic trials. Individual
narrow-sense heritabilities estimates from the
spatial single trial analyses were low (average
of 0.06), but typical of this species. Estimated
dominance relative to additive variances were
unstable across sites (from 0.00 to 1.59). The
implications of these estimations will be dis-
cussed with respect to the western hemlock
genetic improvement program in British
Columbia.

Key words: Tsuga heterophylla, non-spatial and spa-
tial single trial analysis, model comparison, spatial
multi-environment trial analyses, B-spline, Additive
and Dominance variances, Heritability, Genotype by
environmental interactions.

Introduction 

Western hemlock [Tsuga heterophylla (Raf.)
Sarg.] is one of the most important coniferous
species in the British Columbia (BC) accounting
for about 60% of the of the province’s coastal
timber profile (WEBBER, 2000). Due to its shade
tolerant growth habit it forms dense, productive
stands with annual mean increment ranging as
high as 17 m3ha–1years–1 (POJAR and MACKIN-
NON, 1994) on well drained organic soils from
tide water to 1100 m elevation. Although Dou-
glas-fir [Pseudotsuga menziesii (Mirb) Franco]
is preferred for lumber due to slightly greater
wood density, strength, and resistance to decay,
western hemlock is preferred for pulp based on
lack of coloured extractives, and finer fibers.
Western hemlock is a fecund species, amenable
to both natural regeneration, and tree improve-
ment, being a relatively easily managed seed
orchard species (WEBBER, 2000).

Knowledge of genetic parameters is required
to formulate breeding strategies, as well as esti-
mated breeding values and gains from selection
(WHITE, 1996). Moreover, multi-environment
trials (MET) allow the study of the differential
response of genotypes to different environmen-
tal conditions, i.e. quantifying the magnitude of
the genotype by environment interactions if

related material is tested. However, information
on (co)variance genetic parameters (and func-
tions of them) in western hemlock is extremely
limited and published reports are based on only
in open-pollinated families (FOSTER and LESTER,
1983; POLLARD and PORTLOCK, 1986; KING,
1990).

To ignore spatial variability in forest genetic
trials leads to bias in estimating genetic param-
eters and predicting breeding values (MAG-
NUSSEN, 1993, 1994), so that accuracy of
selection decreases, thus reducing genetic gain.
The presence of spatial environmental patterns
within most field test sites is typically influ-
enced by factors such as variations in soil fertil-
ity, moisture content and depth, slope, and all
are well known characteristics of forest genetic
trials in the field (e.g., DUTKOWSKI et al., 2006;
ZAS, 2006; CAPPA and CANTET, 2007; YE and
JAYAWICKRAMA, 2008). To reduce the impact this
environmental variability on quantitative
genetic parameters tree breeders use spatial
models. Spatial models permit modeling site
heterogeneity by including two main compo-
nents: a) ‘local trend’ or small-scale variation,
and b) ‘global trend’ or large-scale variation
(GRONDANA et al., 1996). The two sources are
observable in forest genetic trials: either each
component alone or in combination with each
other (e.g., FU et al., 1999; COSTA E SILVA et al.,
2001; HAMANN et al., 2002; DUTKOWSKI et al.,
2006; YE and JAYAWICKRAMA, 2008). Numerous
a posteriori spatial methods have been proposed
and implemented in forest genetic trials to
model the small- and/or large-scale spatial vari-
ability. CAPPA and CANTET (2007) proposed to
use tensor products of cubic B-splines based on
a mixed model framework by treating the B-
spline function parameters as random variables
(i.e., using a covariance structure for the ran-
dom knots effects) in a two-dimensional grid
(RUPPERT et al., 2003). They illustrated the
methodology to account for large-scale continu-
ous spatial variation in an individual-tree
mixed model with data from a progeny trial of
Eucalyptus globulus ssp. globulus Labill. The
new two-dimensional surface provided an
increase in the heritability and the accuracy of
the estimated breeding value of parent and off-
spring. However, CAPPA and CANTET (2007) did
not confirm the ability of this new approach to
remove complex patterns of spatial variation.
CAPPA et al. (2012) extended the methodology
for spatial analyses at a single forest genetic
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trial proposed by CAPPA and CANTET (2007) to a
MET setting, using an individual-tree model
with additive and full-sib family genetic effects
in a two-stage approach. They illustrated the
developments with ten-year height growth data
from two series of eight large second-generation
full-sib progeny trials of western hemlock estab-
lished across eight sites of the North American
Pacific coast. However, their work was based in
the methodological aspect of this novel
approach, and thus, a discussion of the genetic
parameters estimated across sites for this sec-
ond-generation western hemlock full-sib family
trials was not reported by CAPPA et al. (2012).
Additionally, their conclusions were based only
on eight of the ten trials established across the
North American Pacific coast.

As part of the Hemlock Tree Improvement Co-
operative (HEMTIC) testing program, a number
of second-generation full-sib progeny trials of
western hemlock have been established across a
range of sites from Washington state (United
States) to the northern end of the Vancouver
Island in British Columbia (BC, Canada),
between 1997 and 1999. The progeny of these
second-generation trials was formed by recom-
bining the top 150 first-generation parents with
two different mating designs (JAYAWICKRAMA,
2003). The goals of this research are: 1) to study
the performance of the spatial analyses using a
two-dimensional smoothing surface with tensor
product of B-spline bases (CAPPA and CANTET,
2007) for different and complex patterns of spa-
tial variation; 2) to study the effect of the single
trial spatial analysis on estimates of genetic
parameters including additive, family, and error
variances, and functions of these estimates for
each sites in these second-generation full-sib
progeny trials of western hemlock; and 3) to
compare these estimates with those derived
from previous studies. Additionally, the esti-
mates from single site spatial analysis and
those estimated by CAPPA et al. (2012) using a
novel spatial MET analysis, will be used to dis-
cuss the implications for genetic tree improve-
ment of western hemlock in British Columbia.

Material and Methods

Genetic material, mating design and trial
description

Forest genetics programs with western hem-
lock [Tsuga heterophylla (Raf.) Sarg.] in British

Columbia (BC) commenced with selections of
the first parent trees at the University of
British Columbia campus in the late 1950’s. The
first seed orchards were grafted in the next
decade and the first progeny test was estab-
lished in 1972. Starting in 1979, several series
of open-pollinated trials were out-planted by
the BC Forest Service, but due to a reduced
interest in planting hemlock in the early 1980’s
most activities with hemlock genetic improve-
ment ceased, and only 140 BC parents made it
into tests. The early 1990’s saw a renewed
interest in planting improved hemlock, and
additional 170 parents were tested in open-pol-
linated first generation trials. It was also then
that the HEMTIC emerged, with various agen-
cies in the American Pacific Northwest.
HEMTIC provided for sharing access to the
more than 2000 tested parents of the region
(JAYAWICKRAMA, 2003). From this initiative, sec-
ond-generation breeding populations were
established, and 10 of the full-sibling progeny
trials used here for the single site analyses.
Table 1 provides general information about the
10 field tests examined. The western hemlock
full-sib second-generation program are com-
posed of 38,948 progeny, from 483 full-sib fami-
lies originating from 149 unrelated first
generation selected parents, in two ‘series’ with
two different mating structures: 1) ‘Local Dial-
lel’ series (LD), composed of five six-parent dis-
connected partial (half) diallels representing
each of five geographic programs, Oregon (2),
Washington (2) and British Columbia (1), and 2)
‘Elites’ series (E) being composed of the ‘best’ 30
parents (i.e., 6 best parents from each of the
five programs as ranked at the end of first gen-
eration open-pollinated tests). Each parent in
the E series was crossed with two unrelated
parents from each of the five programs. A
detailed description of the genetic material
included in these trials can be found in CAPPA et
al. (2012). Additionally, two standard seedlots
occur on all 10 sites but one (Russell). These
standard seedlots were excluded for the estima-
tion of genetic parameters. The first is a ‘woods
run’ standard composed of 15 commercially
 collected seedlots from across the seed zone of
interest. The second is an advanced generation
standard for HEMTIC. It is a seedlot with con-
tributions from a mix of six full-sib crosses from
the most central program in the co-operative
(Gray’s Harbour) selected to represent the
range of parental breeding values in that 
group. 
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The six trials of the LD series were estab-
lished in a ‘Sets in Replicates’ design (SCHUTZ
and COCKERHAM, 1966; ‘S in R’), with families
within a local diallel grouped together in a set
(‘genetic group’). Each replicate include all the
sets. Preliminary single-site analyses showed
that genetic groups (i.e., sets) were statistically
differences (p<0.05) in the six trials analyzed of
the LD series. The families of the four trials of
the E series were planted in incomplete block
alpha design (WILLIAMS and METHESON, 1994;
IB) with 30 replications and 10 incomplete
blocks within replications. Single tree plots
were used in all trials. Tree spacing was

2�2 m, 2.5�2.5 m or 3�2.5 m, depending
upon land availability. The trait analyzed was
total height (HT, cm) measured at age 10. The
six LD series trials were planted in 1997 and
1998 and the four ED series sites were planted
in 1999. They are distributed along the Pacific
coast, from Washington State to the northern
end of the Vancouver Island in BC (i.e. from
47°13’52’’ to 50°34’42’’ of latitude north, from
123°54’15’’ to 127°41’30’’ of longitude west and
from 45 to 590 meters of altitude). Eight of
these ten HEMITIC full-sib progeny trials, five
from the LD series (Jordan 2, Kiyu, Jordan 3,
Rupert 1 and Humptulips) and three from the

Table 1. – Location, sites characteristics, design information, mean with standard deviation, minimum and maxi-
mum values for Total Height at age of 10 years for each of the ten trials.

Note: aAMP: annual mean precipitation; bAMT: annual mean temperature; c MTCT: minimum mean temperature
of the coldest month (usually January); dMTWM: maximum mean temperature of the warmest month  (usually
August); eS in R: ‘Sets in Replicates’ design; ICB: Incomplete block design (Alpha design); fSD: standard devia-
tion.
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ED series (Stove, Tlupana and Michelsen) were
used by CAPPA et al. (2012) for the two-stage
spatial MET analysis.

Statistical models of analysis

Four individual-tree mixed models were eval-
uated on each site: one non-spatial (NonSP) and
three spatial (SP) models. In matrix notation,
the non-spatial individual-tree mixed models
with additive and specific full-sib family genetic
effects of a general form for the LD and E series
is:

[1]

where the vector y contains the phenotypic data
for each site; the vector � included the fixed
effects of genetic groups (i.e., from 23 to 26; LD
series) and overall site mean (E series); a is the
vector of random additive genetic effects of indi-
vidual trees (breeding values); f is the vector of
random specific full-sib family genetic effects
(specific combining ability effects) and e is the
vector of random error; X, Za and Zf are inci-
dence matrices relating the observations (y) to
the model effects �, a and f, respectively. The
vector a was assumed distributed as N~(0, A
�2

a) where A is the additive tree-level relation-
ship matrix (HENDERSON, 1984) for the trial
trees and their known ancestors, and �2

a is the
additive genetic variance. A Gaussian density is
also assumed for full-sib family effects f~N (0, I
�2

f) where I is a identity matrix and �2
f is the

full-sib family variance, which includes one
quarter of the dominance genetic variance (�2

d).
Finally, the vector e is distributed as e~N (0, I
�2

e) and �2
e is the error variance. Additionally,

the non-spatial model [1], include replicate
effects [vector r~N (0, I �2

r), LD series] and
incomplete block effects [vector s~N (0, I �2

s),
E series] as random design effects.

A smoothing surface with different number of
knots: 10�10 (SP10), 20�20 (SP20) and
30�30 (SP30) was added to model [1] following
CAPPA and CANTET (2007) closely. Then, an indi-
vidual-tree mixed model with additive and spe-
cific full-sib family genetic effects that include a
smoothed surface to account for environmental
heterogeneity is equal to

[2]

where B has dimension n � (nxr = number of
knots for rows � nxc = number of knots for

columns) and is equal to B = (Br � 1’nxc) #
(1’nxr � Bc), Bi (i = r or c) are the matrices of the
order n � nxi that contains the d + 1 nonzero B-
spline bases needed to express each row and
column in terms of cubic B-spline bases. Calcu-
lations of the Bi (i = r or c) coefficients were per-
formed using the recursive algorithm of DE

BOOR (1993). The symbols � and # indicate the
Kronecker and Hadamard products of matrices,
respectively (HARVILLE, 1997). The parametric
vector b of order (nxr � nxc) � 1 contains the
parameters of the tensorial product of B-
splines. The distribution of the random vector b
is such that b~N (0, U �2

b). The scalar �2
b is the

variance of the random knot effects (RKE,
CAPPA and CANTET, 2007) for rows and columns
and U of order (nxr � nxc) � (nxr � nxc) is the
covariance structure in two dimensions for the
B-spline knots. In the present study, and follow-
ing to CAPPA and CANTET (2007), we select as
covariance structure the simple tridiagonal
matrix originally proposed by GREEN and
SILVER MAN (1994, p. 13) and then used by
 DURBAN et al. (2001) to fit a fertility trend.
However, there are other dense structures that
allow modeling a gradual decay in correlation
as knots are separated further in the direction
of the rows or of the columns, such as those pro-
posed by Cantet et al. (2005) or HYNDMAN et al.
(2005). A more detailed explanation of the two-
dimensional surface (Bb) using the tensor prod-
uct of cubic B-splines with equal number of
knots for row and column, can be found in
CAPPA and CANTET (2007, pp. 2678–2679).

Spatial analysis of residuals

In order to identify spatial patterns of site
heterogeneity in the data of each site, we exam-
ined the spatial distribution of the residuals of
tree HT, using a model with fixed effects of
genetic groups (LD series) and overall mean (E
series) and random effect of breeding values
and full-sibs family effects (LD and E). As
expected, different spatial patterns of site het-
erogeneity were observed among the 10 trials;
i.e., a) small-scale variation (Kiyu, Jordan 3,
Klanawa and Russell), b) large-scale variation
in one dimension either across rows (Hump-
tulips and Michelsen) or columns (Jordan 2 and
Stove) combined with small-scale variation; and
c) large-scale variation in two dimensions (i.e.,
across rows and columns; Rupert 1 and
Tuplana) combined with small-scale variation.
Three examples of these types of spatial distri-
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Figure 1. – First column: a) typical spatial patterns of the residuals of tree HT found on three of the 10
western hemlock progeny trials; one exhibiting small-scale variation (Kiyu), one exhibiting distinct  
large-scale variation in one dimension together with small-scale variation (Humptulips), and one exhibit-
ing distinct large-scale variation in two dimension together with small-scale variation (Tlupana). Inten-
sity of the shading of the squares represent the magnitude of the residuals; the darker the square, the
larger the residual (empty square areas represent no planted tree). Second column: b) best surfaces (i.e.,
smaller DIC) from the fitting of tensor product B-splines with either 30 (Kiyu) and 10 (Humptulips and
Tlupana) knots.
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butions of HT residuals are in Figure 1a. The
color intensity represents the magnitude of the
residuals. Note that the residuals are not ran-
domly distributed in the three experimental
fields. 

Bayesian inference and model comparison

The Bayesian approach via Gibbs sampling
was used to estimate the parameters in the
non-spatial model [1] and spatial single trial
models [2] following to CAPPA and CANTET

(2007). Conjugate prior densities were chosen
for all parameters. The assumed prior distribu-
tion of the parameter for the models [1] and [2]
are: �~N (0, K) with K a diagonal matrix with
large elements (kii > 108), r~N (0, I �2

r), s~N (0,
I �2

s), b~N (0, U �2
b), a~N (0, A �2

a), f~N (0, I
�2

f), �2
i ~ Inv – �2 (�2i, �i) with i = r, s, b, a, f and

e. In these expressions, N is the Gaussian dis-
tribution, Inv-�2 is the Scaled inverted Chi-
square distribution with hypervariances �2i and
degrees of belief �i, for i = r, s, b, a, f and e,
respectively. Therefore, the joint and condi-
tional posterior densities are Gaussian for r, s,
b, a, f and e, and Scaled inverted Chi-square for
the �2

i. 

The values of the hypervariances �2i with i = r,
s, b, a, f and e, were estimated from the same
raw phenotypic data set using an empirical
Bayes approach via Gibbs sampling, with an
individual-tree model including fixed effects of
blocks and genetic groups, and random additive
and full-sib family genetic effects. As there was
no prior information on the hypervariance of
the RKE, we tried different values of �2b in the
interval [0, �2e) and found that the algorithm
converged always to the same posterior mean of
�2

b in all spatial models. In all cases, the
degrees of belief were then set to 10 (i.e. �i = nA
= 10) to reflect a relatively high degree of
 uncertainty (SORENSEN and GIANOLA, 2002; 
page 57).

For each non-spatial and spatial single trial
models, a single long Gibbs chain of 1,010,000
samples was drawn, and the first 10,000 iter-
ates were discarded as ‘burn-in’. The 1,000,000
additional samples were used for computing the
summary from the marginal posterior distribu-
tion in each model. Convergence was monitored
by plotting the iterations against the mean of
the draws up to each iteration (running mean
plots) for each parameter. Marginal posterior
densities for all parameters were estimated by

the Gaussian kernel method (SILVERMAN 1986,
chap. 2). Means, modes, medians, standard
deviations, and 95% high posterior density
intervals (95% HPD), were then calculated
using “Bayesian Output Analysis” (BOA version
1.0.1; SMITH, 2003) for all parameters from the
individual marginal posteriors, using software
R (R Development Core Team 2011).

At the end of each iteration of the Gibbs sam-
pling individual narrow-sense heritability (h

^ 2
N),

dominance variance (�2
d) and individual broad-

sense heritability (h
^ 2
B) was calculated for each

single trial as follows:

where, �^ 2a, �^ 2f, and �^ 2e are the values of the
additive, full-sib family genetic, and error vari-
ances sampled at a given iteration.

The Deviance Information Criterion (DIC,
SPIEGELHALTER et al., 2002) was computed to
compare the fit of each single trial model. The
DIC criterion is defined as: DIC = D

–
(�M) + pD,

where D
–
(�M) is the posterior mean of the

deviance and pD the ‘effective number of param-
eters’. A smaller DIC value indicates a better fit
and lower degree of model complexity. Addi-
tional model comparisons were provided by a
visual inspection of the spatial patterns of the
residuals and the resulting estimates surfaces.
Finally, the accuracy of predicted breeding val-
ues (acc) was computed using the following
expression:

where PEV stands for ‘prediction error vari-
ance’ (HENDERSON, 1984) of predicted breeding
values using the ‘Best Linear Unbiased Predic-
tors’ (BLUP’s) of parent and offspring. Esti-
mates of the additive genetic variance were
those obtained in each of the non-spatial and
spatial models. Spearman-rank correlations
using PROC CORR of SAS were also calculated
to compare whether the ranking of predicted
breeding values differed between the non-spa-
tial individual-tree model and the best individ-
ual-tree model with a two-dimensional surface.
Relative genetic gains were predicted from each
model as the posterior means of the breeding
values for the top 20% of parents and the best
5% for offspring (COSTA e SILVA et al., 2001).



66

Computer programs employed to carry out the
Bayesian inference, as well as to solve the
mixed models equations and to obtain corre-
sponding accuracies of all models analyses were
developed in FORTRAN (the FORTRAN pro-
gram is available upon request).

Results and Discussion 

Model comparison 

It has been reported that a posteriori spatial
model yields a more efficient analysis than the
classical a priori design models when the
 spatial structure is pronounced in forest genetic
trials (e.g. COSTA e SILVA et al., 2001; SAENZ-
ROMERO, 2001; JOYCE et al., 2002; DUTKOWSKI,
2002, 2006; YE and JAYAWICKRAMA, 2008; FINLEY
et al., 2009). In our study, all models that
included a tensor product of B-splines (spatial
model) had a smaller DIC (i.e., better fits) than
non-spatial (Table 2), showing the benefits of
including a random spatial process in the linear
mixed model for the observed data. Neverthe-

less, the average DIC reduction due to spatial
effects captured by the B-splines was 404.4 and
168.6 for the ‘S in R’ and IB designs, respec-
tively. That means, overall the a priori IB
design was more effective in accommodating the
environmental spatial heterogeneity than the ‘S
in R’ design. For example, the average reduction
(and increases of the precision) of �^ 2e were
13.9% (8.4%) and 18.0% (12.3%) for IB and ‘S
in R’, respectively. Therefore, as expected,
incomplete block designs were better than com-
plete block designs in controlling the site varia-
tions (FU et al., 1998; WILLIAMS and MATHESON,
1994).

Spatial patterns 

Small- and large-scale variations in one or
two dimensions together with small-scale varia-
tion were observed in the 10 western hemlock
second-generation progeny trials. In general,
large-scale continuous spatial variation in these
trials would be due to factors such as gradual
change in the topography, gradients in soil

Table 2. – Deviance Information Criterion (DIC, expressed as differences from the DIC for the non-spatial model),
posterior means (Mean) and standard deviations (SD) of the additive genetic variance (�^ 2a), dominance genetic
variance (�^ 2d = 4��^ 2f), error variance (�^ 2e), individual narrow-sense heritability (h

^ 2
N), individual broad-sense heri-

tability (h
^ 2
B), dominance to additive variance ratio (�^ 2d /�^ 2a), replicates variances (�^ 2r) and incomplete block vari-

ance (�^ 2s) from the non-spatial (NonSP) and spatial (SP) single trial models.

Note: a Model NonSP: non-spatial model with replicates and incomplete block effects.
Model SP10: P-splines with 10 knots for rows and 10 knots for columns.
Model SP30: P-splines with 30 knots for rows and 30 knots for columns.
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attributes (nutrients, moisture and drainage),
and anthropologic factors such as road building
further affecting drainages patterns and soil
compaction after logging activities. Meanwhile,
small-scale variation would largely be due to:
variable micro-site soil moisture, wet and dry
pockets, variation in drainage, variable soil
depth, from the presence of rocks and root rots
of old trees, and uneven distribution of organic
matter and nutrients which is particularly
important for western hemlock. Three examples
of the typical spatial patterns of the residuals
found in these progeny trials, and the spatial
effects estimated, are displayed in Figure 1.
Figure 1b illustrates the estimated smoothest
surface for the mixed model with best fits (i.e.,
smaller DIC) for the small-scale spatial varia-
tion in Kiyu: 30�30 knots (SP30), and for the
small- and distinct large-scale spatial variabil-
ity in one dimension in Humptulips, and two
dimensions in Tlupana: 10�10 knots (SP10).
Additionally, the estimated surface with the
spatial models shows that the degree of smooth-
ness decreases with the increase in the number
of knots from 10 to 30 to allow for more refined
fits of the environmental variation. Visual com-
parison between the best estimated smoother
surfaces of spatial models (Figure 1b) and the
corresponding spatial patterns of the residuals
(Figure 1a) highlights only slight differences.

The number of knots affects the amount of
smoothing applied to the data by controlling the
number of piecewise fits. In trials with predomi-
nately large-scale variation in two dimensions
(Rupert 1 and Tuplana) together with some
smaller scale variation, the smaller number of
knots studied (i.e., 10�10 knots for row and
column) lead to a smooth surface that is flexible
enough to capture the main (predominate)
large-scale continuous spatial variation as well
as the less significant micro-site variability in
the data (e.g., Tuplana Figure 1b). In the other
extreme, in trials with predominance of small-
scale spatial variation (e.g., Kiyu, Jordan 3,
Klanawa and Russell) the use of a large number
of knots (i.e., 30�30 knots for row and column)
allowed for more flexibility in fitting peaks and
valleys and therefore better account for the
patchy micro-site patterns (e.g., Kiyu, Figure
1b). In trials with large-scale variation in one
dimension (e.g., Humptulips, Michelsen, Jordan
2 and Stove), together with small-scale varia-
tion, depending on the predominance of either
small-scale or large-scale variation in one direc-

tion, the models with 10�10 (SP10) or 30�30
knots (SP30) yielded the best fit. For example,
Humptulips showed an environmental variation
visually distinct large-scale environmental vari-
ation in one directions but with a less signifi-
cant small-scale variation (Figure 1a) and 10
knots for row and column were enough to model
these patterns of spatial variability (Figure 1b).

Effect of the spatial single trial analysis 
on genetic parameters

Small- and large-scale spatial variations are
commonly observed in forest genetic trials,
either alone or in combination with each other
(e.g., FU et al., 1999; COSTA e SILVA et al., 2001;
HAMANN et al., 2002; DUTKOWSKI et al., 2006; YE
and JAYAWICKRAMA, 2008). Unaccounted spatial
variability in forest genetic trials can lead to
bias in estimates of genetic parameters and pre-
dicted breeding values (MAGNUSSEN, 1993,
1994); a bias which diminishes accuracy of
selection. In the current research, we fit a two-
dimensional surface using a tensor product of
cubic B-spline basis functions with equal num-
ber of knots for rows and columns in an individ-
ual-tree mixed model (CAPPA and CANTET, 2007),
to remove small-scale spatial variation and
large-scale variations in one or two dimension
together with small-scale on 10 second-genera-
tion progeny trials of western hemlock. Our
results showed that the fit of smoothed surfaces
produced a reduction of �^ 2e across the 10 trials,
ranging from 3.3 to 32.5%, and an increment in
its precision (i.e., lower standard deviations) by
1.9 to 25.5% (Table 2). These reductions confirm
that there are spatial variations that are not
adequately accounted for by the a priori design
effects. Moreover, most of the high posterior
density intervals for �^ 2e were disjoint between
the non-spatial and spatial models (results not
shown). In a progeny trial of Eucalyptus
 globulus ssp. globulus, CAPPA and CANTET

(2007) by means of the same method applied in
this study, with cubic B-splines and equal num-
ber of knots for row and column, reported a 50%
reduction in the error variance from the model
with an apriori randomized complete block
design. After adjusting a separable autoregres-
sive (AR(1)�AR(1)) error structure, several
studies showed a reduction in the �^ 2e (e.g. COSTA

e SILVA et al., 2001; DUTKOWSKI et al., 2006; YE
and JAYAWICKRAMA, 2008). However, DUTKOWSKI

et al. (2002) showed only slight changes of the
error variances in the five progeny trials they



68

analyzed. Additionally, SAENZ-ROMERO (2001)
reduced the residual error by 42% using quad-
ratic polynomials for rows and columns and cor-
related errors, whereas no changes were
reported by HAMANN et al. (2002) using Kriging.
The fit of a smoothed surface to the 10 progeny
tests of western hemlock, instead of the a priori
‘S in R’ and IB designs, showed a small but
inconsistent effect on the estimated additive
genetic variance (�^ 2a, Table 2), with �^ 2a both
decreasing and increasing in value from –11.2
to 9.3%. Different a posteriori spatial
approaches in other forest genetic trials and
species have also shown variable affects on �^ 2a.
Inconsistent effects are typically seen when the
data model includes a spatial autoregressive
correlated error terms (e.g. YE and JAYAWICK-
RAMA, 2008; DUTKOWSKI et al., 2006, 2002;
COSTA e SILVA, 2001). However, JOYCE et al.
(2002) reported a consistent decrease in the in a
farm-field test of black spruce, using a two-step
approach. ZAS (2006) using an iterative Kriging
method found a consistent increase in the
genetic variance in four large Pinus pinaster
Ait. progeny trials. In three genetics trials of
red alder (Alnus rubra Bong.), HAMANN et al.
(2002), who removed the spatial variability by
means of single Kriging, reported an increase in
the genetic variance compared to classical
analysis. Other studies have also reported an
increase in �^ 2a (KUSNANDAR and GALWEY, 2000;
ANEKONDA and LIBBY, 1996). 

Estimated of h2
N for the univariate models

that fitted the best two-dimensional surface
were consistently higher than those estimated
with a non-spatial model. Although the average
increase in heritability was only ~0.01, the
increment ranged from 1.7 to 29.3%, with an
average of 19.3% which is quite significant for
such a low heritability trait. In contrast, esti-
mated of h2

N from a earlier study using a multi-
environment non-spatial and spatial models
(see Table 3 in CAPPA et al., 2012) showed incon-
sistent changes between the series, increasing
(to a maximum of 66.7% in the LD series) or
decreasing (less than 11.1% in the ED series).

The Spearman-rank correlation between pre-
dicted breeding values from the non-spatial
models and the best spatial models across the
10 trials were on average 0.960, 0.972 and 0.974
for families, parents and offspring, respectively,
indicating that there was very little re-ranking
among families, parents and the progenies.
Additionally, in keeping with the general reduc-

tions in �^ 2a, the average accuracy of breeding
values from parents and offspring estimated
with the best spatial model were higher than
the corresponding values estimated with the
non-spatial a priori ‘S in R’ and IB designs
(averaging 4.5% for families and 2.7% for par-
ent and offspring), which are in agreement with
several studies that compared spatial models
with different a priori designs (YE and JAYA -
WICKRAMA, 2008; ZAS, 2006; DUTKOWSKI et al.,
2006, 2002; COSTA e SILVA et al., 2001). A sub-
stantial fraction of the gain in accuracy is due
to the fact that not all environmental spatial
variability is accounted for the design features,
variation that would otherwise go to the error
variance. 

In spite of the fact the best fitting spatial
models had large reductions with respect to
DIC (Table 2), the relative genetic gain
improvements in the LD series were less than
5.12% for parents and 3.71% for offspring,
when the top 20% and 5% of the parents and
offspring are selected. Due to the small number
of parents (30) in the E series trials, not sur-
prisingly there was effectively no additional
parent level gain, but there was an offspring
gain for the use of the spatial analyses. Even
with small absolute increases in h2

N (i.e.,~0.02),
and average genetic gain improvements of 1.47
and 1.53% for parents and offspring, respec-
tively, selection decisions based on inference
with a spatial process model would differ from
those based on a conventional design-consistent
inference and this has an important implica-
tions in particularly for the LD series. Modest
changes in the predicted genetic gain with spa-
tial adjustment were also reported by YE and
JAYAWICKRAMA (2008).

Heritabilities estimates and ratio of dominance
to additive genetic variance

Estimated of h2
N and h2

B for height from the
single site analyses were low, with the average
estimates across the six LD series trials being
0.05 and 0.07, respectively; and 0.08 and 0.12
for the respective values estimates across the
four ED series trials (Table 2). In an earlier
study, CAPPA et al. (2012) showed that estimates
of h2

N and h2
B at each site from a novel spatial

MET model were still low, with the average
estimates across the five LD series trials being
0.06 and 0.09, respectively. Meanwhile, the cor-
responding values estimated for the average of
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the three ED series trials were 0.08 and 0.11
(see Table 3 in CAPPA et al., 2012). These esti-
mates were lower (an average of ~0.08) than
that found in 213 open-pollinated families of
western hemlock for Foster and Lester (1982)
(their values ranged from 0.09 to 0.23) across
four test sites planted in OR and WA. However,
JAYAWICKRAMA (2003; see Table 2) reviewed esti-
mates of western hemlock individual-tree heri-
tabilities, and estimated h2

B for height growth
from other sets of open-pollinated trials planted
in OR and WA, and these were also usually less
than 0.1 (typically around 0.06 to 0.07).
Although, the estimated of h2

B tend to also be
lower than comparable estimates for Douglas-
fir in the region (e.g. YANCHUK, 1996) and for
other temperate conifers (e.g. WU and MATHE-
SON, 2004), it appears western hemlock simply
has low heritiabilities for early height growth.

The relative importance of additive to non-
additive genetic variance plays a vital role in
practical tree breeding: choice of breeding and
deployment population strategies, prediction of
response to selection and evaluation of breeding
systems (WU and MATHESON, 2004). The esti-
mated of �2

d relative to �2
a (�2

d /�2
a) for height at

the age of 10 years varied among the ten sites
(from 0.00 to 1.59; Table 2), which suggested
that capturing of the dominance variation for
height in western hemlock would require aim-
ing to some specific crosses to specific sites.
Until now, little has been published on domi-
nance variance in western hemlock and the reli-
ability of the estimates are typically limited by
there being a relatively small number of genetic
entries (i.e. mating design with few full-sib fam-
ilies) included in the analysis. The estimates of
�2

d /�2
a also were variable among eight western

hemlock trials studied by CAPPA et al. (2012)
and using a spatial MET model (from 0.00 to
1.17; see Table 3 in CAPPA et al., 2012). Such
variable estimates of the �2

d /�2
a ratio across

sites were also observed in other Pinus species.
For example, in radiata pine estimates of the
variance ratio of specific combining ability to
general combining in tree diameter, ranged
from 20% to 1,035% across 10 6�6 half-diallel
mating experiments planted at ten sites across
Australia (WU and MATHESON, 2004). In Pinus
sylvestris, ZHELEV et al. (2003) estimated the
ratio of non-additive to additive genetic vari-
ance in height growth at the age of 12 and 16
years from 144 full-sib families (12�12 facto-
rial cross) located at four test sites, and

reported that varied from 1.0% to 71.2%. WALD -
MANN et al. (2008), in a recent review in pines,
concluded that there seems to be no general
trend about the level of dominance compared to
additive variance, but it often seems as if at
least some dominance is present in growth
traits.

Additive genetic correlations between sites 
from the spatial MET analysis

Multi-environment forest genetics trials
allowed studying the magnitude and impor-
tance of the genotype by environment interac-
tions. Rank-change interaction is reflected in
departures of the additive genetic correlations
between sites j and j’ (rajj ’) from the perfect cor-
relation (i.e. rajj ’ = +1). CAPPA et al. (2012)
showed that average estimates for rajj ’ among
sites from the spatial MET analysis were rela-
tively high for the LD (0.75) and ED (0.88)
series, indicating that the additive by environ-
ment interaction was low in this full-sib mate-
rial (see Table 4 in CAPPA et al., 2012). However,
high posterior density intervals do not include
rajj ’ = +1; therefore, some rank changes between
sites could be possible. FOSTER and LESTER
(1983) showed no significant family by site
interaction on fifth-year height in their study of
western hemlock (the four sites varied from
45°30� (Tillamook, OR) to 48°15� (Clallam Bay,
WA) latitude north and altitudes from 110 to
440 meters). POLLARD and PORTLOCK (1986)
found similar results for height growth in four
provenance test sites located in Vancouver
Island (BC, from 48°55� to 50°37� of latitude
north), with no interaction provenance by site. 

A slight trend was apparent with more geo-
graphically close sites having higher genetic
correlations (see Figure 1 and Table 4 in CAPPA

et al., 2012). For example, Humptulips (WA,
47°13’52’’) had significantly higher rajj ’ values
with Jordan 2 (Vancouver Island, 48°25’16’’;
0.88) and 3 (Vancouver Island, 48°24’44’’; 0.89)
than with Kiyu (Vancouver Island, 50°05’07’’;
0.73) and the distant Rupert 1 site (Vancouver
Island, 50°34’21’’; 0.61). Moreover, there was no
overlap in the 95% HPD of the rajj ’ between
Humptulips and the most southern BC: Jordan
2 and 3 trials and the north BC: Kiyu and
Rupert 1 trials. Although only eight second-gen-
eration full-sib progeny trials were included in
the spatial MET analysis reported by CAPPA et
al. (2012), and thus only thirteen rajj ’ between
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pairs of sites from the multi-environment spa-
tial model may be estimated, linear regressions
of rajj ’ on absolute differences in latitude, longi-
tude and altitude between pairs of trials, were
examined. In spite of the maximum latitudinal
and longitudinal difference among trials in both
series being 3.4° and 3.8°, respectively (Table 1),
the slope of both absolute difference in latitude
(i.e. north-south) and longitude (i.e. east-west)
were statistically significant (p<0.05). However,
the adjusted R2 were low to moderate (differ-
ence in latitude = 0.34 and difference in longi-
tude = 0.47, Figure 2), which suggests that the
geographic distance (i.e. latitude and longitude)
have a small but significant negative effect on
genetic correlation between sites at age-10
height for western hemlock in this set of trials.
The latitudinal and longitudinal differences
were highly associated with differences in the
annual mean temperature (Pearson correlation
equal to 0.93 and 0.75, respectively; maximum
temperature difference 2.4 degree Celsius), and
thus showing a latitudinal (and longitudinal)
temperature gradient. Therefore the slightly
lower genetic correlations between the northern
and the most southern sites are likely the result
of temperature differences attributable to lati-
tudinal and longitudinal effects impacting on
the performance of some genotypes. This would
require more detailed analyses of which may be
the more interactive families, on which particu-
lar sites, but this is a topic of future research. A
latitudinal trend (i.e. north-south trend) was
reported in a seedling study of three open-polli-
nated families from each of 21 western hemlock
different provenances from 38°38� in California
to 58°23� in Alaska, for cold hardiness, survival
(KUSER and CHING, 1980) and seedling growth
(KUSER and CHING, 1981). Nevertheless, as
pointed out by KING (1990), this clinal trend is
not maintained when the more extreme prove-
nances of high and low latitudes are removed. 

Linear regressions of rajj ’ on absolute differ-
ence in altitude, showed no statistically signifi-
cant effect (p>0.05; Figure 2); which suggests
that the altitudinal differences of these trials
did not have a noticeable effect on rajj ’ in west-
ern hemlock. However, KING (1990) based on
the results of the four best heritability sites on
one of three series of tests of open-pollinated
progeny trials of western hemlock, observed
that there was more interaction among family
means between low and higher elevation sites
(i.e. from 150 to 1100 meter of altitude). The
non-significant difference among rajj ’ and the

Figure 2. – Regression of additive genetic correlations
(rajj’) on between site absolute difference in latitude
(a), longitude (b) and altitude (c) for the 13 western
hemlock full-sib progeny trial pairs.
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absolute difference in altitude in this study may
be because these trials were on sites with a
small elevational range (i.e. from 45 to 590
meters).

Conclusion and implications for tree
improvement in western hemlock

We found that the mixed model with the
smoothing surface will allow us to model differ-
ent and complex patterns of spatial variation in
the 10 large progeny trials of western hemlock.
The mixed model enable us to account for small-
and/or the large-scale environmental variation,
simply by increasing of the number of knots,
and the retention design effects or the addition
of fixed or random classification variables were
not needed.

Height growth trait appears to be heritable
but under a low degree of genetic control with
individual narrow-sense heritabilities around
0.08. This outcome was expected and while fam-
ily selection would be satisfactory for selecting
seed orchard candidates, within family (for-
ward) selections would have to be assessed in
polycross tests before inclusion in seed
orchards. Second generation trials established
in 2005 used clonal replication (rooted cuttings)
to address the problem of poor accuracy of indi-
vidual tree breeding value predictions. The
importance of dominance variance varied
among the ten sites, which suggested that cap-
turing dominance variation for height in west-
ern hemlock would require allocating to some
specific crosses on specific sites. However, given
the reluctance on the part of the forest industry
to invest in the silviculture of western hemlock,
this approach is unlikely to be adopted.

Additive genetic correlations estimates
between sites obtained by CAPPA et al. (2012)
showed a slight trend with the geographic dis-
tance (i.e. latitude and longitude), probably
associated with differences in the annual mean
temperature. However, and despite these envi-
ronmental differences across trials, the height
trait on the different sites can be considered the
same trait, since there were weak additive by
environmental interactions across of the eight
trials. Clearly the current seed zone in which
all the trials are located provides acceptable
administrative bounds. Given the wide range of
origins of trees tested, a reassessment of a sub-
set of tests at age 15 or 20 years is advisable.
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Abstract

Twenty-two year measurements of a test of
inter- and intraspecific larch hybrids among
European (E), Japanese (J) and tamarack (T)
parents growing in central Maine reveal signifi-
cant hybrid vigor, especially among crosses
involving J and E parents. The mean heights
and diameters of all the interspecific crosses
between J and E parents exceeded those of
intraspecific crosses among either of the par-
ents. The mean height after 22 years for all 17
JxE and ExJ crosses was 19.2 m (63 feet),
which compares favorably with heights of
loblolly pine plantations at age 25 growing in
the southeastern USA, where site index ranged
from 12.2 m to 24.4 m (40 and 80 feet respec-
tively). In addition the mean height of these
larch crosses was 30% greater than that of a
control hybrid seed lot of German origin.
Crosses between E and T parents also per-
formed well, but exhibited relatively poor form,
and seed set was very low. Seed set and viabil-
ity for crosses between J and E were as good as

intraspecific parental crosses. Therefore propa-
gation of hybrid larch crosses via controlled pol-
lination and rooted cuttings is feasible, and the
potential benefits of larch plantations for
Maine’s forest economy are briefly discussed. 
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Introduction

Reports of naturally occurring larch hybrids
between European (Larix decidua Mill.) and
Japanese larch (L. kaempferi (Lamb) Carriere)
exhibiting exceptional growth followed the
introduction of Japanese larch into European
arboretums in 1861 (SANDER and LAANELAID,
2007). Since then, there has been considerable
interest in realizing the potential of larch
hybrids in France, Sweden, Quebec, the Peo-
ple’s Republic of China and throughout US as a
rapidly growing plantation species (PÂQUES,
1989; PERRON, 2008; ECO et al., 2004). Over the
last 30 years, plantations of an open-pollinated
half-sib E�J family from a German seed
orchard (LANGNER and SCHNECK, 1998) have
been established in Maine, Nova Scotia, the
Lake States and the state of Oregon. In Maine
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