1,158 research outputs found

    A hybrid neuro--wavelet predictor for QoS control and stability

    Full text link
    For distributed systems to properly react to peaks of requests, their adaptation activities would benefit from the estimation of the amount of requests. This paper proposes a solution to produce a short-term forecast based on data characterising user behaviour of online services. We use \emph{wavelet analysis}, providing compression and denoising on the observed time series of the amount of past user requests; and a \emph{recurrent neural network} trained with observed data and designed so as to provide well-timed estimations of future requests. The said ensemble has the ability to predict the amount of future user requests with a root mean squared error below 0.06\%. Thanks to prediction, advance resource provision can be performed for the duration of a request peak and for just the right amount of resources, hence avoiding over-provisioning and associated costs. Moreover, reliable provision lets users enjoy a level of availability of services unaffected by load variations

    Excitonic Effects in Quantum Wires

    Get PDF
    We review the effects of Coulomb correlation on the linear and non-linear optical properties of semiconductor quantum wires, with emphasis on recent results for the bound excitonic states. Our theoretical approach is based on generalized semiconductor Bloch equations, and allows full three-dimensional multisubband description of electron-hole correlation for arbitrary confinement profiles. In particular, we consider V- and T-shaped structures for which significant experimental advances were obtained recently. Above band gap, a very general result obtained by this approach is that electron-hole Coulomb correlation removes the inverse-square-root single-particle singularity in the optical spectra at band edge, in agreement with previous reports from purely one-dimensional models. Strong correlation effects on transitions in the continuum are found to persist also at high densities of photoexcited carriers. Below bandgap, we find that the same potential- (Coulomb) to kinetic-energy ratio holds for quite different wire cross sections and compositions. As a consequence, we identify a shape- and barrier-independent parameter that governs a universal scaling law for exciton binding energy with size. Previous indications that the shape of the wire cross-section may have important effects on exciton binding are discussed in the light of the present results.Comment: Proc. OECS-5 Conference, G\"ottingen, 1997 (To appear in Phys. Stat. Sol. (b)

    The contribution of the supplementary motor area to explicit and implicit timing: A high-definition transcranial Random Noise Stimulation (HD-tRNS) study

    Get PDF
    It is becoming increasingly accepted that timing tasks, and underlying temporal processes, can be partitioned on the basis of whether they require an explicit or implicit temporal judgement. Most neuroimaging studies of timing associated explicit timing tasks with activation of the supplementary motor area (SMA). However, transcranial magnetic stimulation (TMS) studies perturbing SMA functioning across explicit timing tasks have generally reported null effects, thus failing to causally link SMA to explicit timing. The present study probed the involvement of SMA in both explicit and implicit timing tasks within a single experiment and using HighDefinition transcranial Random Noise Stimulation (HD-tRNS), a previously less used technique in studies of the SMA. Participants performed two tasks that comprised the same stimulus presentation but differed in the received task instructions, which might or might not require explicit temporal judgments. Results showed a significant HD-tRNS-induced shift of perceived durations (i.e., overestimation) in the explicit timing task, whereas there was no modulation of implicit timing by HD-tRNS. Overall, these results provide initial noninvasive brain stimulation evidence on the contribution of the SMA to explicit and implicit timing tasks

    Coastal Groundwater Bodies Modelling Using Geophysical Surveys: The Reconstruction of the Geometry of Alluvial Plains in the North-Eastern Sicily (Italy)

    Get PDF
    The integration of various geophysical methodologies is considered a fundamental tool for accurately reconstructing the extent and shape of a groundwater body and for estimating the physical parameters that characterize it. This is often essential for the management of water resources in areas affected by geological and environmental hazards. This work aims to reconstruct the pattern and extent of two groundwater bodies, located in the coastal sectors of the North-Eastern Sicily, through the integrated analysis and interpretation of several geoelectrical, seismic and geological data. These are the Sant’Agata-Capo D’Orlando (SCGWB) and the Barcelona-Milazzo (BMGWB) Groundwater Bodies, located at the two ends of the northern sector of the Peloritani geological complex. These two studied coastal plains represent densely populated and industrialized areas, in which the quantity and quality of the groundwater bodies are under constant threat. At first, the resistivity models of the two groundwater bodies were realized through the inversion of a dataset of Vertical Electrical Soundings (VES), constrained by stratigraphic well logs data and other geophysical data. The 3D resistivity models obtained by spatially interpolating 1D inverse VES models have allowed for an initial recognition of the distribution of groundwater, as well as a rough geological framework of the subsoil. Subsequently, these models were implemented by integrating results from active and passive seismic data to determine the seismic P and S wave velocities of the main lithotypes. Simultaneous acquisition and interpretation of seismic and electrical tomographies along identical profiles allowed to determine the specific values of seismic velocity, electrical resistivity and chargeability of the alluvial sediments, and to use these values to constrain the HVSR inversion. All this allowed us to recognize the areal extension and thickness of the various lithotypes in the two investigated areas and, finally, to define the depth and the morphology of the base of the groundwater bodies and the thickness of the filling deposits

    A Cascade Neural Network Architecture investigating Surface Plasmon Polaritons propagation for thin metals in OpenMP

    Full text link
    Surface plasmon polaritons (SPPs) confined along metal-dielectric interface have attracted a relevant interest in the area of ultracompact photonic circuits, photovoltaic devices and other applications due to their strong field confinement and enhancement. This paper investigates a novel cascade neural network (NN) architecture to find the dependance of metal thickness on the SPP propagation. Additionally, a novel training procedure for the proposed cascade NN has been developed using an OpenMP-based framework, thus greatly reducing training time. The performed experiments confirm the effectiveness of the proposed NN architecture for the problem at hand

    What drives the active involvement in business angel groups? The role of angels' decision-making style, investment-specific human capital and motivations

    Get PDF
    This paper sheds light over the operations and internal structure of business angel groups (BAGs), a leading actor inside the informal venture capital industry, due to its capability to build cognitive resources and shared competencies that are eventually provided to funded ventures alongside equity capital. We develop a framework based on the role of business angels' decision-making style, human capital and motivation as major determinants of their active involvement in the many different activities performed by angel groups, either investment related activities or group management activities. Our empirical analysis relies on a novel survey-based dataset containing qualitative and quantitative information provided by the members of two large and rather homogeneous business angel groups located in France and in Italy. Results show that business angels with a control-oriented decision-making style tend to be more actively involved in key angel group activities. Human capital built through investment experience, retirement status, as well as initial motivation to join an angel group are also significant drivers of angel involvement in several key BAG activities

    A lightweight prototype of a magnetometric system for unmanned aerial vehicles

    Get PDF
    Detection of the Earth’s magnetic field anomalies is the basis of many types of studies in the field of earth sciences and archaeology. These surveys require different ways to carry out the measures but they have in common that they can be very tiring or expensive. There are now several lightweight commercially available magnetic sensors that allow light-UAVs to be equipped to perform airborne measurements for a wide range of scenarios. In this work, the realization and functioning of an airborne magnetometer prototype were presented and discussed. Tests and measures for the validation of the experimental setup for some applications were reported. The flight sessions, appropriately programmed for different types of measurements, made it possible to evaluate the performance of this detection methodology, highlighting the advantages and drawbacks or limitations and future developments. From the results obtained it was possible to verify that the measurement system is capable of carrying out local and potentially archaeological magnetometric measurements with the necessary precautions

    Geophysical Constraints to Reconstructing the Geometry of a Shallow Groundwater Body in Caronia (Sicily)

    Get PDF
    The characterization of a groundwater body involves the construction of a conceptual model that constitutes the base knowledge for monitoring programs, hydrogeological risk assessment, and correct management of water resources. In particular, a detailed geological and geophysical approach was applied to define the alluvial Caronia Groundwater Body (CGWB) and to reconstruct a hydrogeological flow model. The analysis of the CGWB, located in north-eastern Sicily, was initially approached through a reanalysis of previous stratigraphic (boreholes) and geophysical (vertical electrical soundings and seismic refraction profiles) data, subsequently integrated by new seismic acquisitions, such as Multichannel Analysis of Surface Waves (MASW) and horizontal-to-vertical seismic ratio (HVSR). The analysis and reinterpretation of geoelectrical data allowed the construction of a preliminary 3D resistivity model. This initial modeling was subsequently integrated by a geophysical data campaign in order to define the depth of the bottom of the shallow CGWB and the thickness of alluvial deposits. Finally, a preliminary mathematical model flow was generated in order to reconstruct the dynamics of underground water. The results show that integration of multidisciplinary data represent an indispensable tool for the characterization of complex physical systems
    corecore