5 research outputs found

    Oeuf d'ascaris Suum : Approches structurales et environnementales

    No full text
    Non disponible / Not available

    Oeuf d'ascaris Suum (Approches structurales et environnementales)

    No full text
    NANCY1-SCD Pharmacie-Odontologie (543952101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    The Utility of Dreissena polymorpha for Assessing the Viral Contamination of Rivers by Measuring the Accumulation of F-Specific RNA Bacteriophages

    No full text
    International audienceRiver water that receives treated wastewater can be contaminated by pathogens including enteric viruses due to fecal pollution, which may represent an important public health hazard. There is a great diversity of enteric viruses and fecal bacteriophages, especially F-specific RNA bacteriophages (FRNAPHs), are commonly proposed as indicators of viral pollution due to a variety of characteristics such as their structural similarities to the main enteric viruses, their high concentrations in raw wastewater and their environmental survival rate, which is better than other cultivable enteric viruses. However, evaluating the viral contamination of water on the basis of FRNAPH concentration levels continues to present a challenge. This is because the quality of detection is strongly dependent on the quantity of viral particles, high spatio-temporal variabilities and the physico-chemical conditions of the water during sampling. To overcome these limitations, the present study aims to evaluate whether the bivalve mollusk Dreissena polymorpha (zebra mussel) could be considered a suitable experimental model for assessing the viral contamination of rivers. In order to determine this, the capacity of D. polymorpha to accumulate FRNAPHs and assimilate them into their soft tissue was studied. This provided a proof of concept for the use of D. polymorpha to evaluate the viral contamination of surface water. Two experiments were conducted: (1) an in situ experiment to confirm that zebra mussels naturally accumulated FRNAPHs and (2) a laboratory experiment to determine the accumulation and depuration kinetics of FRNAPHs in D. polymorpha tissue. The study highlights the capacity of the mussels to accumulate infectious FRNAPHs both on a laboratory scale under controlled conditions as well as in situ at different sites that are representative of different bodies of water. An analysis of the mussels’ soft tissue showed that they were capable of reflecting the water’s contamination level very quickly (within less than 24 h). Moreover, the soft tissue retained the viral load much longer than the water due to a low depuration rate. The analysis of FRNAPH concentrations in mussels exposed in situ suggested that there were differences in contamination levels between sites. These preliminary results underline the potential utility of zebra mussels in assessing viral contamination by measuring the accumulation of FRNAPHs in their tissue. This may ultimately enable stakeholders to use zebra mussels as a means of monitoring viral pollution in surface water

    Developmental Defects in Huntington's Disease Show That Axonal Growth and Microtubule Reorganization Require NUMA1

    No full text
    Although the classic symptoms of Huntington's disease (HD) manifest in adulthood, neural progenitor cell behavior is already abnormal by 13~weeks' gestation. To determine how these developmental defects evolve, we turned to cell and mouse models. We found that layer II/III neurons that normally connect the hemispheres are limited in their growth in HD by microtubule bundling defects within the axonal growth cone, so that fewer~axons cross the corpus callosum. Proteomic analyses of the growth cones revealed that NUMA1 (nuclear/mitotic apparatus protein 1) is downregulated in HD by miR-124. Suppressing NUMA1 in wild-type cells~recapitulates the microtubule and axonal growth defects of HD, whereas raising NUMA1 levels with antagomiR-124 or stabilizing microtubules with epothilone B restores microtubule organization and rescues axonal growth. NUMA1 therefore regulates the microtubule network in the growth cone, and HD, which is traditionally conceived as a disease of intracellular trafficking, also disturbs the cytoskeletal network
    corecore