14 research outputs found
The challenge of unprecedented floods and droughts in risk management
Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3
Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about the processes, interactions and feedbacks in complex human-water systems leading to flood and drought impacts. Here we present a benchmark dataset containing socio-hydrological data of paired events, i.e., two floods or two droughts that occurred in the same area. The 45 paired events occurred in 42 different study areas and cover a wide range of socio-economic and hydro-climatic conditions. The dataset is unique in covering both floods and droughts, in the number of cases assessed, and in the quantity of socio-hydrological data. The benchmark dataset comprises: 1) detailed review style reports about the events and key processes between the two events of a pair; 2) the key data table containing variables that assess the indicators which characterise management shortcomings, hazard, exposure, vulnerability and impacts of all events; 3) a table of the indicators-of-change that indicate the differences between the first and second event of a pair. The advantages of the dataset are that it enables comparative analyses across all the paired events based on the indicators-of-change and allows for detailed context- and location-specific assessments based on the extensive data and reports of the individual study areas. The dataset can be used by the scientific community for exploratory data analyses e.g. focused on causal links between risk management, changes in hazard, exposure and vulnerability and flood or drought impacts. The data can also be used for the development, calibration and validation of socio-hydrological models. The dataset is available to the public through the GFZ Data Services (Kreibich et al. 2023, link for review: https://dataservices.gfz-potsdam.de/panmetaworks/review/923c14519deb04f83815ce108b48dd2581d57b90ce069bec9c948361028b8c85/).</p
Shifting Flood Risk Management (FRM) in England and the Netherlands: public flood risk perceptions and responses
Floods are one of the most damaging global events faced by society. Recent, significant flood events have also occurred despite suggestions that improved disaster risk reduction in the years prior have counteracted increasing socio-economic exposure and vulnerability. Shifting management, from traditional hazard-focused and engineered measures to integrated Flood Risk Management (FRM), is one way of tackling this ‘wicked’ water and flood problem. Yet, by applying a risk-based approach, and more emphasis being given to other aspects of the safety cycle such as preparation and recovery, it is important to understand how flood risk perceptions influence personal behaviours to risks. However, a feedback loop has been identified between flood risk perceptions and FRM, with only one side of this relationship included in literature. Recent socio-hydrology theories and concepts are contributing to this gap, but this work remains predominately theoretical.
Applying an interdisciplinary approach, this thesis first reviews the evolution of FRM directions in England and the Netherlands, two countries described as similar in some cases of managing flood risk. It then draws upon case studies of different FRM approaches in both countries to investigate the often-missed influence of varying FRM upon flood risk perceptions. Finally, this thesis analyses public preferences towards FRM and socio-hydrological response assumptions to flood events.
The results indicate that although both countries have progressed to a well-developed state of FRM, dominant and county-specific factors have both hindered and progressed developments. The level to which FRM measures are applied, and whether these are reactive or proactive, also differs between countries due to varying combinations of policy change drivers. When investigating flood risk perceptions in the case studies across England and the Netherlands, FRM may play a part in influencing these, particularly when considering future likelihood of flooding, but a combination of other influential factors such as political involvement, community participation and frequent flooding also play a role in driving flood risk perceptions. Finally, socio-hydrology response assumptions and FRM preferences were tested with respondents that had been directly, indirectly, and never impacted by flooding. The results found that while prevention may be preferred to protection overall for FRM, flooding responses depend on the influence of previous flood events
The need to integrate flood and drought disaster risk reduction strategies
Most research on hydrological risks focuses either on flood risk or drought risk, whilst floods and droughts are two extremes of the same hydrological cycle. To better design disaster risk reduction (DRR) measures and strategies, it is important to consider interactions between these closely linked phenomena. We show examples of: (a) how flood or drought DRR measures can have (unintended) positive or negative impacts on risk of the opposite hazard; and (b) how flood or drought DRR measures can be negatively impacted by the opposite hazard. We focus on dikes and levees, dams, stormwater control and upstream measures, subsurface storage, migration, agricultural practices, and vulnerability and preparedness. We identify key challenges for moving towards a more holistic risk management approach
ტასო და ვასო აბაშიძეები
peer reviewedMost research on hydrological risks focuses either on flood risk or drought risk, whilst floods and droughts are two extremes of the same hydrological cycle. To better design disaster risk reduction (DRR) measures and strategies, it is important to consider interactions between these closely linked phenomena. We show examples of: how flood or drought DRR measures can have (unintentional) positive or negative impacts on risk of the opposite hazard; and (b) how flood or drought DRR measures can be negatively impacted by the opposite hazard. We focus on dikes and levees, dams, stormwater control and upstream measures, subsurface storage, migration, agricultural practices, and vulnerability and preparedness. We identify key challenges for moving towards a more holistic risk management approach
The challenge of unprecedented floods and droughts in risk management
Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3
Recommended from our members
The challenge of unprecedented floods and droughts in risk management.
Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3