80 research outputs found

    A control volume finite-element model for predicting the morphology of cohesive-frictional debris flow deposits

    Get PDF
    To predict the morphology of debris flow deposits, a control volume finite-element model (CVFEM) is proposed, balancing material fluxes over irregular control volumes. Locally, the magnitude of these fluxes is taken proportional to the difference between the surface slope and a critical slope, dependent on the thickness of the flow layer. For the critical slope, a Mohr–Coulomb (cohesive-frictional) constitutive relation is assumed, combining a yield stress with a friction angle. To verify the proposed framework, the CVFEM numerical algorithm is first applied to idealized geometries, for which analytical solutions are available. The Mohr–Coulomb constitutive relation is then checked against debris flow deposit profiles measured in the field. Finally, CVFEM simulations are compared with laboratory experiments for various complex geometries, including canyon–plain and canyon–valley transitions. The results demonstrate the capability of the proposed model and clarify the influence of friction angle and yield stress on deposit morphology. Features shared by the field, laboratory, and simulation results include the formation of steep snouts along lobe margins.</p

    Thermal Decomposition Kinetics of Woods with an Emphasis on Torrefaction

    Get PDF
    The pyrolysis kinetics of Norwegian spruce and birch wood was studied to obtain information on the kinetics of torrefaction. Thermogravimetry (TGA) was employed with nine different heating programs, including linear, stepwise, modulated and constant reaction rate (CRR) experiments. The 18 experiments on the 2 feedstocks were evaluated simultaneously via the method of least-squares. Part of the kinetic parameters could be assumed common for both woods without a considerable worsening of the fit quality. This process results in better defined parameters and emphasizes the similarities between the woods. Three pseudo-components were assumed. Two of them were described by distributed activation energy models (DAEMs), while the decomposition of the cellulose pseudo-component was described by a self-accelerating kinetics. In another approach, the three pseudo-components were described by n-order reactions. Both approaches resulted in nearly the same fit quality, but the physical meaning of the model, based on three n-order reactions, was found to be problematic. The reliability of the models was tested by checking how well the experiments with higher heating rates can be described by the kinetic parameters obtained from the evaluation of a narrower subset of 10 experiments with slower heating. A table of data was calculated that may provide guidance about the extent of devolatilization at various temperature residence time values during wood torrefaction

    Kinetic Behavior of Torrefied Biomass in an Oxidative Environment

    Get PDF
    The combustion of four torrefied wood samples and their feedstocks (birch and spruce) was studied at slow heating programs, under well-defined conditions by thermogravimetry (TGA). Particularly low sample masses were employed to avoid the self-heating of the samples due to the huge reaction heat of the combustion. Linear, modulated and constant-reaction rate (CRR) temperature programs were employed in the TGA experiments in gas flows of 5 and 20% O2. In this way the kinetics was based on a wide range of experimental conditions. The ratio of the highest and lowest peak maxima was around 50 in the experiments used for the kinetic evaluation. A recent kinetic model of Várhegyi et al. [Energy & Fuels 2012, 26, 1323-1335] was employed with modifications. This model consists of two devolatilization reactions and a successive char burn-off reaction. The cellulose decomposition in the presence of oxygen has a self-accelerating (autocatalytic) kinetics. The decomposition of the non-cellulosic parts of the biomass was described by a distributed activation model. The char burn-off was approximated by power-law (n-order) kinetics. Each of these reactions has its own dependence on the oxygen concentration that was expressed by power-law kinetics, too. The complexity of the applied model reflects the complexity of the studied materials. The model contained 15 unknown parameters for a given biomass. Part of these parameters could be assumed common for the six samples without a substantial worsening of the fit quality. This approach increased the average experimental information for an unknown parameter by a factor of 2 and revealed the similarities in the behavior of the different samples

    Materials produced from plant biomass: part II: evaluation of crystallinity and degradation kinetics of cellulose

    Get PDF
    In this study Eucalyptus grandis (CEG) and Pinus taeda (CPT) cellulose fibers obtained from kraft and sulfite pulping process, respectively, were characterized using Fourier transform infrared (FTIR) spectroscopy and thermogravimetry (TGA). The degradation kinetic parameters were determined by TGA using Coats and Redfern method. FTIR results showed that CPT presented a more ordered structure with higher crystallinity than CEG. Thermogravimetric results showed that CPT had a higher thermal stability than CEG. The kinetic results revel that for CEG the degradation mechanism occurs mainly by random nucleation, although phase boundary controlled reactions also occurs while for CPT the degradation process is more related with phase boundary controlled reactions. Results demonstrated that differences between thermal stability and degradation mechanisms might be associated with differences in the cellulose crystalline structure probably caused by different pulping processes used for obtaining the cellulose fibers

    Pyrolysis of large wood samples

    No full text
    The kinetics of pyrolysis of large wood samples--up to 27 mm--has been studied by isothermal thermogravimetric analysis. Rate of weight loss can be represented by a first order Arrhenius-type equation, with an activation energy of 125 kJ/mole. The temperature inside the wood sample is given by integration of the Fourier law, in which the thermal diffusivity is temperature- and conversion-dependent. This simple model enables one to predict the time needed to achieve pyrolysis of a large wood sample.

    Activated carbon from thermo-compressed wood and other lignocellulosic precursors

    No full text
    The effects of thermo-compression on the physical properties such as bulk density, mass yield, surface area, and also adsorption capacity of activated carbon were studied. The activated carbon samples were prepared from thermo-compressed and virgin fir-wood by two methods, a physical activation with CO2 and a chemical activation with KOH. A preliminary thermo-compression method seems an easy way to confer to a tender wood a bulk density almost three times larger than its initial density. Thermo-compression increased yield regardless of the mode of activation. The physical activation caused structural alteration, which enhanced the enlargement of micropores and even their degradation, leading to the formation of mesopores. Chemical activation conferred to activated carbon a heterogeneous and exclusively microporous nature. Moreover, when coupled to chemical activation, thermo-compression resulted in a satisfactory yield (23%), a high surface area (>1700 m2.g-1), and a good adsorption capacity for two model pollutants in aqueous solution: methylene blue and phenol. Activated carbon prepared from thermo-compressed wood exhibited a higher adsorption capacity for both the pollutants than did a commercial activated carbon
    corecore