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ABSTRACT.  The pyrolysis kinetics of Norwegian spruce and birch wood was studied to obtain 

information on the kinetics of torrefaction.  Thermogravimetry (TGA) was employed with nine 

different heating programs, including linear, stepwise, modulated and constant reaction rate (CRR) 

experiments. The 18 experiments on the two feedstocks were evaluated simultaneously by the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/19329957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1021/ef4016075
http://dx.doi.org/10.1021/ef4016075


 

 

2 

method of least squares. Part of the kinetic parameters could be assumed common for both woods 

without a considerable worsening of the fit quality.  This process results in better defined parameters 

and emphasizes the similarities between the woods.  Three pseudocomponents were assumed.  Two 

of them were described by distributed activation energy models (DAEM), while the decomposition 

of the cellulose pseudocomponent was described by a self-accelerating kinetics. In another approach 

all the three pseudocomponents were described by n-order reactions.  Both approaches resulted in 

nearly the same fit quality but the physical meaning of the model based on three n-order reactions 

was found to be problematic.  The reliability of the models was tested by checking how well the 

experiments with higher heating rates can be described by the kinetic parameters obtained from the 

evaluation of a narrower subset of 10 experiments with slower heating.  A table of data was 

calculated that may provide guidance about the extent of devolatilization at various temperature – 

residence time values during wood torrefaction. 

 

1. INTRODUCTION 

There is a growing interest in lignocellulosic biomass fuels and raw materials due to climate 

change problems.  However, the widespread use of biomass fuels is frequently hindered by their 

unfavorable fuel characteristics like high moisture content, poor grindability, low calorific value and 

low bulk density.  Torrefaction is one of the potential solutions to these problems and it has gained 

research momentum as a biomass pre-treatment process in the last two decades.  It results in 

improved biomass fuel properties such as reduced moisture content, higher energy density, 

improved hydrophobic behavior, and less energy consumption during grinding.1-3  Torrefaction is 

typically conducted at 200–300°C, at atmospheric pressure, in the absence of oxygen and with 

particle heating rates below 50°C/min.4  The lignocellulosic biomass is partly decomposed during 
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the torrefaction releasing condensable liquids and non-condensable gases into the gas phase.5  

Primarily the xylan-containing hemicellulose polymers decompose because they are the most 

reactive polymer structures in biomass.6,7  The extractives of the biomass also decompose while the 

cellulose and lignin are moderately impacted during torrefaction, depending on the feedstock 

composition and the torrefaction temperature.8   

Many studies are available on the production and characterization of torrefaction products.  Fewer 

works deal with the torrefaction kinetics, however.9-15  Most of these studies are based on isothermal 

experiments.  Prins et al.9 and Bates et al.11 employed a one component, two step successive reaction 

model based on an earlier work of Di Blasi and Lanzetta16 on xylan kinetics.  The same model was 

used in a recent TGA-MS study by Shang et al.15  Peng et al.12 used a one component, one-step 

reaction model for torrefaction with long residence time and a two component, one-step reaction 

model for torrefaction with short residence time.  Chen and Kuo10 studied the torrefaction of 

hemicelluloses, cellulose and lignin separately using a global one-step reaction model for each. They 

described the torrefaction process of a biomass material by superimposed kinetics of the three 

components. 

The torrefaction kinetics is part of a broader subject: the pyrolysis kinetics of biomass materials.  

If a kinetic model describes well the biomass pyrolysis, then it can obviously be used for torrefaction 

kinetics.  Moreover, such a model can describe the pyrolysis behavior of the torrefied wood, too, if 

the experimental data used for the determination of the model parameters include temperature 

programs where the heating to higher temperatures is preceded by longer residence times in the 

temperature domain of the torrefaction.  This way was followed in the present work.  Such kinetic 

descriptions will be presented which describe well both the lower and the higher temperature regions 

of the wood pyrolysis.  The work is based on thermogravimetric (TGA) experiments, because TGA 

is a high-precision method that provides well defined conditions in the kinetic regime.  The highest 
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heating rate of the study was 40°C/min at which the decomposition terminated around 600°C.  We 

did not employ isothermal kinetics because the concept “isothermal” involves a substantial transient 

time which is lost from the evaluation of the thermogravimetric experiments.  Though an 

“isothermal” experiment is involved in the study, it is evaluated together with the heat-up period.  

The information content of an essentially non-isothermal series of experiments was used to draw 

dependable kinetic information. 

Due to the complex composition of biomass materials, the conventional linearization techniques 

of the non-isothermal kinetics are not suitable for the evaluation of the TGA experiments. Therefore 

the TGA experiments of biomass materials are usually evaluated by the non-linear method of least 

squares, assuming more than one reaction.17-19  Biomass fuels and residues contain a wide variety 

of reactive species.  The assumption of a distribution in the reactivity of the decomposing species 

frequently helps the kinetic evaluation of the pyrolysis of complex organic samples.20  The 

distributed activation energy models (DAEM) have been used for biomass pyrolysis kinetics since 

1985, when Avni et al. applied a DAEM for the formation of volatiles from lignin.21  Several variants 

of DAEMs are known; usually a Gaussian distribution of the activation energy is employed.  The 

use of DAEM in pyrolysis research was subsequently extended to a wider range of biomasses and 

materials derived from plants.  Due to the complexity of the investigated materials the model was 

expanded to simultaneous parallel reactions (pseudocomponents) that were described by separate 

DAEMs.22-25  The increased number of unknown model parameters required the least squares 

evaluation of larger series of experiments with linear and non-linear temperature programs.22,26-29  

The model parameters obtained in this way allowed accurate prediction outside the domain of the 

experimental conditions of the given kinetic evaluations.22,26,28,29  The prediction tests helped to 

confirm the reliability of the model. 
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The complex decomposition of the biomass pseudocomponents can be approximated formally by 

n-order (power-law) kinetics, too.  Manyà et al. proved that third order kinetics gives a better 

description for the lignin pseudocomponent of the biomass than the simpler first order kinetics.30  

Conesa and Domene showed the applicability of high reaction orders (up to 9.5) for the formal 

description of the pseudocomponents in biomass pyrolysis kinetics.19  The aims of the present work 

included a careful comparison of the DAEM and the n-order approaches on a particularly wide 

domain of temperature – time functions. 

 

2. SAMPLES AND METHODS 

2.1 Samples.  Birch and spruce samples were taken from standard Norwegian construction boards.  

Table 1 shows the proximate and ultimate analyses, and the higher heating values of the samples.  

A recent work of Tapasvi et al.3 lists the corresponding data for the torrefied products prepared from 

the same woods.  Before the experiments, the samples were cut into smaller pieces and ground in a 

cutting mill that was equipped with a 1 mm bottom sieve.  The samples were sieved afterward and 

the particles in the range of 63-125 μm were used for the kinetic study.  

 

Table 1: Proximate and ultimate analyses of the samples 

Sample Proximate analysisa Ultimate analysisa HHVb 

 VM fC Ash C H O N S  

Birch 89.4 10.4 0.2 48.62 6.34 44.90 0.09 < 0.05 19.80 

Spruce 86.3 13.4 0.2 50.10 6.36 43.52 0.07 < 0.05 20.45 

a % (m/m), dry basis.  b Higher heating value, MJ/kg, dry basis. 

 

2.2 Experimental Setup and Procedure.  The experiments were carried out by a Q5000 IR 

analyzer from TA Instruments which has a sensitivity of 0.1 µg.  High purity nitrogen was used as 
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purge gas with a gas flow of 100 mL/min.  The initial sample mass was between 3 and 10 mg.  The 

samples of both woods were analyzed with nine different heating programs, as shown in Figure 1.  

The linear T(t) experiments had heating rates of 40, 20, 10 and 5°C/min.   The isothermal experiment 

with 30 min residence time at 275°C mimicked the T(t) of the actual torrefaction experiments used 

in earlier works.3,31  In the modulated experiments sinus waves with 5 °C amplitudes and 200 s 

wavelength were superposed on a slow, 2 °C/min linear T(t).  They served to increase the rather 

limited information content of the linear T(t) experiments.  In the “constant reaction rate” (CRR) 

experiments the equipment regulated the heating of the samples so that the reaction rate would 

oscillate around a preset limit.32  The CRR experiments aimed at getting very low mass-loss rates in 

the whole domain of the reaction.  The highest mass loss rate was found to be 0.8 µg/s in these 

experiments.  This value corresponds to 0.8×10-4 s-1 after normalization by the initial dry sample 

mass.  The T(t) program for a CRR experiment obviously depends on the behavior of the given 

sample.  Two stepwise temperature programs were employed which also served to increase the 

amount of experimental information for the kinetic evaluation.22,26-29 

Figure 2 shows a test on the employed sample masses.  The comparison of experiments with 3 

and 10 mg initial sample masses (solid and dashed curves) indicates that the enthalpy change of the 

decomposition does not result in a considerable thermal lag at the higher sample mass.  Figure 2 

also compares the decomposition of the birch and spruce samples (red and blue lines).  One can see 

that the low temperature partial peak, around 280-300°C, is more separated in the case of the birch 

sample.  This is a usual difference between hardwoods (angiosperm trees) and conifers.33  The main 

peak, belonging to the cellulose decomposition,33 is very similar; its peak maximum occurs around 

383°C for both samples in Figure 2. 
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Figure 1.  Temperature programs used in the TGA experiments.  Note that the T(t) needed for a 

nearly constant heating rate in the CRR experiments was determined by the instrument and differed 

for the two samples.   

 

Figure 2.  A test on the effect of sample mass and the comparison of the birch and spruce 

decomposition at 20°C/min heating rate. 

 

2.3. Kinetic Evaluation by the Method of Least Squares and Characterization of the Fit 

Quality.  Fortran 95 and C++ programs were used for the numerical calculations and for graphics 
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handling, respectively.  The employed numerical methods have been described in details earlier.27  

The kinetic evaluation was based on the least squares evaluation of the -dmobs/dt curves, where mobs 

is the sample mass normalized by the initial dry sample mass.  The method used for the 

determination of -dmobs/dt does not introduce considerable systematic errors into the least squares 

kinetic evaluation of experimental results.34  The model was solved numerically along the empirical 

temperature – time functions.  The minimization of the least squares sum was carried out by a direct 

search method, as described earlier.27  Such values were searched for the unknown model parameters 

that minimized the following objective function (of): 

of = ∑ ∑
[(
𝑑𝑚

𝑑𝑡
)
𝑘

𝑜𝑏𝑠
(𝑡𝑖)−(

𝑑𝑚

𝑑𝑡
)
𝑘

𝑐𝑎𝑙𝑐
(𝑡𝑖)]

2

𝑁𝑘ℎ𝑘
2

𝑁𝑘
𝑖=1

𝑁𝑒𝑥𝑝𝑒𝑟

𝑘=1  (1) 

Here Nexper is the number of experiments evaluated together; its value is 18 in the present work.  

Nk denotes the number of ti time points on a given curve and m is the sample mass normalized by 

the initial dry sample mass.  The division by ℎ𝑘
2 serves to counterbalance the high magnitude 

differences.  Traditionally hk is the highest observed value of the given experiment: 

hk = max (
𝑑𝑚

𝑑𝑡
)
𝑘

𝑜𝑏𝑠

 (2) 

The normalization by the highest observed values in the least squares sum assumes implicitly that 

the relative precision is roughly the same for the different experiments.  This assumption has proved 

to be useful in numerous works on non-isothermal kinetics since 1993.35  A recent work31 deviated 

from this rule because the extremely low mass loss rates of the CRR experiments, 0.04–0.07 µg/s 

corresponded to a worse relative precision than the rest of the experiments.  In the present work, 

however, we did not have so low mass loss rates; the peak maxima of the CRR experiments were 

>10 times higher, 0.8 µg/s, while most of the decomposition occurred at mass loss rates of 0.5 µg/s 

in these experiments. 
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The obtained fit quality can be characterized separately for each of the experiments evaluated 

together.  For this purpose the relative deviation (reldev, %) will be used.  The root mean square 

(rms) difference between the observed and calculated values is expressed as percent of peak 

maximum.  For experiment k we get: 

reldev (%) = 100 { ∑
[(
𝑑𝑚

𝑑𝑡
)
𝑘

𝑜𝑏𝑠
(𝑡𝑖)−(

𝑑𝑚

𝑑𝑡
)
𝑘

𝑐𝑎𝑙𝑐
(𝑡𝑖)]

2

𝑁𝑘ℎ𝑘
2

𝑁𝑘
𝑖=1  }

0.5
 (3) 

The fit quality for a given group of experiments is characterized by the root mean square of the 

corresponding relative deviations.  The relative deviation of the 18 experiments evaluated together 

can be expressed by equations 1 – 3 as  

reldev18 (%) = 100 √𝑜𝑓 (4) 

Obviously a smaller reldev18 value indicates a better fit. 

 

2.4. Distributed Activation Energy Model (DAEM).  As outlined in the Introduction, a model 

of parallel reactions with Gaussian activation energy distribution was chosen as a starting point 

because favorable experience has been obtained by this type of modeling on similarly complex 

materials.22-29  According to this model the sample is regarded as a sum of M pseudocomponents, 

where M is usually between 2 and 4.  Here a pseudocomponent is the totality of those decomposing 

species which can be described by the same reaction kinetic parameters in the given model.  A 

pseudocomponent may involve a large number of different reacting species.  The reactivity 

differences are described by different activation energy values.  On a molecular level each species 

in pseudocomponent j is assumed to undergo a first-order decay. The corresponding rate constant 

(k) is supposed to depend on the temperature by an Arrhenius formula. Let j(t,E) be the solution of 

the corresponding first order kinetic equation at a given E and T(t) with conditions j(0,E)=0 and 

j(∞,E)=1: 
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dj(t,E)/dt = Aj e
-E/RT [1-j(t,E)] (5) 

The distribution of the species differing by E within a given pseudocomponent is approximated 

by a Gaussian function with mean value Ej and width-parameter (variation) j.  From a 

computational point of view, the approximate solution of a DAEM can simply be calculated from a 

discrete set of j(t,E) functions.36  The normalized sample mass and its derivative are the linear 

combinations of j(t) and dj/dt, respectively: 

-dm/dt = ∑ 𝑐𝑗𝑑𝛼𝑗/𝑑𝑡
𝑀
𝑗=1     and    m(t) = 1 – ∑ 𝑐𝑗𝛼𝑗

𝑀
𝑗=1 (𝑡) (6) 

where a weight factor cj is equal to the amount of volatiles formed from a unit mass of 

pseudocomponent j. 

This model will be called Model Variant I in the later treatment.  Its modifications will be denoted 

by Model Variants II and III, as outlined in Sections 3.1 and 3.3.  Finally the results were compared 

to a simpler, but more formal approximation, in which the decomposition of the pseudocomponents 

was described by n-order reactions: 

𝑑𝛼𝑗

𝑑𝑡
 = 𝐴𝑗exp⁡(−

𝐸𝑗

𝑅𝑇
) (1-j)

nj      (j=1, 2, 3) (7) 

This n-order model will be referred as Model Variant IV in the treatment. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Evaluation by Assuming Distributed Activation Energy Model for the 

Pseudocomponents.  Based on earlier experience with this model,26,28,29 and keeping in mind the 

shape of the DTG curves at linear heating programs (as shown by Figure 2), three 

pseudocomponents were assumed.  The first describes mainly the decomposition of the 

hemicelluloses; the second corresponds to the cellulose decomposition, and the third would be 
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responsible for the long, flat tailing that can be observed at linear heating rates for nearly all 

biomasses.  The graphical representation of these pseudocomponents will be shown in Sections 3.4 

and 3.5.  The width of distribution of the second reaction converged to zero, which means a 1st order 

kinetics.  (The Gaussian distribution is a well-known Dirac delta function, hence a zero width cuts 

out a single reaction from the multitude of first order reactions.)  Therefore the results of Model 

Variant I will be referred as “2DAEMs + 1st order cellulose” in the treatment.  In Model Variant II 

the cellulose decomposition was described by an n-order reaction.  This approach resulted in much 

better fit qualities, as shown in Section 3.2.  The reaction order, n2, was around 0.6.  Model Variant 

II will be referred as “2DAEMs + n-order cellulose” in the treatment.  A further modification of the 

cellulose decomposition kinetics is presented in Section 3.3.  

 

3.2. Evaluation by Assuming Common Parameters.  If part of the model parameters is assumed 

to be common for both samples, two benefits can be achieved: 

(i) The common parameters indicate the similarities in the kinetic behavior of the samples; 

(ii) A given parameter value is based on more experimental information; hence it is less dependent 

on the various experimental uncertainties.  

The basic case is Evaluation 1 where none of the parameters was assumed to be common.  It 

turned out that the fit quality depends only slightly on the exact choice of the values of E3 and 3, 

hence these parameters could be forced to have identical values for both woods with only a slight 

worsening of the fit qualities.  This behavior can be attributed to the ill-defined nature of 

pseudocomponent 3.  As the green curve in Figure 3 shows, it is a wide and flat partial peak.  A 

major part of this peak overlaps with the temperature domains of the first and second 

pseudocomponents.  A change of the curve in this domain can be compensated by relatively small 

changes in the parameters of pseudocomponents 1 and 2.  The situation was similar in two recent 
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works describing biomass pyrolysis by DAEMs.28,29  The existence of various ill-definition 

problems (compensation effects) is well known in non-isothermal reactions.  A similar problem was 

reported by de Jong et al. in 2007 for DAEMs.37  The assumption of a common E3 for both woods 

is denoted as Evaluation 2, while the assumption of common E3 and 3 for both woods is called 

Evaluation 3. 

 

 

 

Figure 3.  The partial peaks at 40°C/min obtained by Evaluation 1 and Model Variant II.  Curves 

shown in the figure: observed and calculated –dm/dt (gray and black); peaks of pseudocomponents 

1, 2, and 3 (blue, red and green). 

 

The decomposition of the cellulose component resulted in similar E2 and n2 values for both woods. 

(The cellulose decomposition will be treated in details in later sections.)  Accordingly these 

parameters could also be forced to have common values (Evaluation 4).  Finally we mention that 

the kinetics of the hemicellulose pyrolysis could also be described by identical E1 and 1 parameters 

with some loss in the fit quality (Evaluation 5).  Table 2 shows the fit quality and the number of 

unknown parameters at the various model variants and evaluation strategies.  Model variants III and 

IV will be discussed in later sections.  
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Table 2: Fit qualitiesa and the number of unknown parametersb at four model variants 

assuming various groups of common model parameters 

Evalu- 

ation 

Common parameters Model variant 

  I 
2 DAEMs + 

1st order 

cellulose 

II 
2 DAEMs + 

n-order 

cellulose 

III 
2 DAEMs + 

accelerating 

cellulosec 

IV 
3 n-order 

reactionsd 

1 none 4.78  (22) 2.31  (24) 2.06  (26) 2.19  (24) 

2 E3 4.78  (21) 2.35  (23) 2.10  (25) 2.21  (23) 

3 E3, 3 or n3
e 4.78  (20) 2.37  (22) 2.14  (24) 2.21  (22) 

4 E3, 3 or n3,  

E2, n2, z2
e 

4.80  (19) 2.46  (20) 2.25  (21) 2.32  (20) 

5 all except the A and 

c parameters 

4.83  (17) 2.61  (18) 2.37  (19) 2.33  (18) 

a reldev18 (%) values are listed which characterize the fit quality of the whole series of experiments, 

as shown by equations 1 – 4.  b The total number of the parameters determined by the method of 

least squares for the two biomasses is indicated in parentheses.  c See Section 3.3.  d See Section 3.6.  
e 3 belongs to Model variants I, II and III while n3 corresponds to model variant IV.  Parameter z2 

will be introduced in Section 3.3..  (z2 occurs only in Model Variant III.) 

 
 

3.3. Kinetics of the Cellulose Decomposition.  In inert atmosphere, under the conditions of 

thermal analysis the cellulose decomposition is usually approximated by first order kinetics.  In the 

present work n-order kinetics with n20.6 gave considerable better fit quality than the first order 

kinetics, as mentioned above.  More complex models are also employed in the literature.  Among 

others, the use of self-accelerating kinetics has been suggested by Conesa et al.38 and Capart et al.39  

In the presence of oxygen the cellulose decomposition was also found to be a self-accelerating 

reaction in recent studies based on evaluation strategies similar to the present work.40,31  The self-

accelerating reactions can typically be described by an equation of type 
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𝑑𝛼2

𝑑𝑡
 = 𝐴2exp⁡(−

𝐸2

𝑅𝑇
) f(2) (8) 

where f is a function capable of expressing self-acceleration.  The mathematical unambiguity 

requires a normalization for f(2) because f functions differing only in constant multipliers are 

equivalent in eq 8 (parameter A2 can compensate any multipliers of f).  As a normalization, we 

require that the maximum of f  be 1.  f(2) is approximated formally by 

f(2)  normfactor (1-2)
n

2 (2+z2) (9) 

where n2 and z2 are model parameters, and normfactor ensures that max f=1.  Parameters n2 and 

z2 do not have separate physical meaning; together however they determine the shape of f, and, in 

this way, the self-accelerating capabilities of the model.  Eq 9 is a slightly simplified version of an 

earlier approximation that has been employed to different self-accelerating reactions.41,40  In the 

present work f(2) reached its maximum at 2 values between 0.05 – 0.15.  The results obtained by 

the use of eq 9 are indicated as Model Variant III in the treatment.  Table 2 indicates that the use of 

eq 9 instead of n-order kinetics decreases reldev18 by 0.21 – 0.25.  This gain in the fit quality is 

obtained by two extra parameter values in Evaluations 1 – 3 (a z2 value for birch and another z2 value 

for spruce) and one extra parameter value in Evaluations 4 – 5 (a common z2 for both woods).  We 

cannot determine the statistical significance of this decrease because the experimental errors of the 

thermal analysis data are neither independent nor random.  Nevertheless, the observed changes in 

reldev18 are higher than the other changes in reldev18 within Model Variant II.  Accordingly, the 

results of Model Variant III were selected for a detailed presentation in the next section. 
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Figure 4.  f(2) functions (a) and f(2)/(1-2) ratios (b) obtained in Evaluation 3 by assuming self-

accelerating kinetics (Model Variant III, solid lines) and n-order kinetics (Model Variant II, dashed 

lines) for the decomposition of the cellulose pseudocomponent. 

 

Figure 4a compares the f(2) functions obtained by eq 9 (solid lines) to the ones obtained by n-

order kinetics [f(2)=(1-2)
n

2, dashed lines].  

The amount of the available cellulose is proportional to 1-2, hence the reaction rate of a unit mass 

of cellulose, i.e. the intrinsic reactivity of the sample is proportional to f(2)/(1-2).  When this 

quantity increases with 2, as shown in Figure 4b, the intrinsic reactivity of the sample is increasing 

at constant T.  f(2)/(1-2) is obviously increasing with 2 if f(2)=(1-2)
n

2 and n2<1.  When 

f(2)=(1-2)
n

2 is plotted as a function of 2, the curve has a slight concave curvature, as the dashed 

lines in Figure 4a show.  However, the n-order kinetics has only a limited ability to express kinetics 

with increasing intrinsic reactivity. 

 

3.4. The Results of Evaluation 3 assuming Model Variant III.  As outlined above, common E3 

and 3 values were assumed for both woods in Evaluation 3 due to the ill-defined nature of these 

parameters, while the decomposition of the cellulose pseudocomponents was described by eq 9 in 

Model Variant III.  Figure 5 and 6 illustrate the corresponding results for the birch and spruce 
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experiments, respectively.  These figures show the variety of the experiments demonstrating that the 

present study is based on a wider range of experiments than its predecessors.28,29  The scaling of the 

vertical axes is particularly noteworthy.  The peak maximum of –dm/dt at T(t) program 1 (40°C/min) 

is nearly a hundred times higher than at T(t) program 7 (CRR).  

Figures 5 and 6 contain the observed and calculated –dm/dt curves (gray and black bold lines); 

the contributions of the three pseudocomponents to the calculated –dm/dt (blue, red and green lines), 

and the non-isothermal T(t) functions, too, when appropriate (thin green line).  The relative deviation 

(rms difference between the observed and calculated points) is also displayed.  These values are 

around 1 and 2 % except the CRR experiments where the relative deviation is 5.1 and 4.2%.  

However, the height of the CRR curves is very low; hence the higher relative deviations correspond 

to very low deviations between the unnormalized mass loss rate data: 0.04 and 0.03 µg/s for the 

birch and spruce samples, respectively.  It is possible that these low deviations are near to the 

experimental uncertainty of the CRR experiments. 
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Figure 5.  Results obtained for the birch experiments by Evaluation 3 and Model Variant III.  Curves 

shown in the figure: observed and calculated –dm/dt (gray and black bold lines); peaks of 

pseudocomponents 1, 2, and 3 (blue, red and green lines).  The temperature is indicated by a thin 

gray line in the experiments with non-linear T(t). 
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Figure 6.  Results obtained for the spruce experiments by Evaluation 3 and Model Variant III.  (See 

Figure 5 for the notations.) 

 

The obtained kinetic parameters are listed in Table 3.  For comparison we listed the corresponding 

values from two recent works on agricultural residues that employed similar kinetic models as well 

as a least squares evaluation of experiments with linear and non-linear T(t).28,29  In this table E1 and 

E3 are the means of the corresponding activation energy distributions.  The cellulose kinetics in the 

present work, however, differs from its predecessors: E2 denotes an activation energy in the columns 

of Birch and Spruce while it is the mean of an activation energy distribution in the columns 

corresponding to the older works.  
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The kinetic parameters of the birch and spruce samples are close to each other.  The difference 

between the two E2 values is only 5 kJ/mol.  The differences in the Aj values follow the differences 

in the Ej values due to the well-known compensation effect between E and A.  The n2 and z2 values 

determine similar f(2) functions, as shown in Figure 4.  This explains why the assumption of 

common E2, n2, and z2 values resulted only in a slight increase of reldev18 in Evaluation 4. 

Table 3: The parameters obtained in Evaluation 3 for Model Variant III and their comparison 

with earlier resultsa 

Sample Birch Spruce Four agri-

cultural 

residuesb 

Two 

corn-

cobsc 

E1 / kJ mol-1 152 169 177 180 

E2 / kJ mol-1 174 169 185 187 

E3 / kJ mol-1 230 = 194 225 

log10 A1/s
-1 11.58 12.62 <14.43> <14.89> 

log10 A2/s
-1 11.98 11.55 <13.77> 14.11 

log10 A3/s
-1 16.33 16.11 <14.23> 16.25 

1 / kJ mol-1 6.0 8.6 4.3 3.9 

2 / kJ mol-1 n.a. n.a. 1.9 0.2 

3 / kJ mol-1 34.1 = 34.5 31.3 

n2 0.80 0.73 n.a. n.a. 

z2 1.04 1.26 n.a. n.a. 

c1 0.32 0.34 <0.10> <0.22> 

c2 0.45 0.34 <0.33> <0.32> 

c3 0.12 0.17 <0.29> <0.18> 

a Character ‘=’ indicates parameter values that are identical for both woods.  Brackets < > indicate 

averages.  b Values obtained for corn stalk, rice husk, sorghum straw and wheat straw by Várhegyi 

et al.28  c Values obtained for two corncob samples from different climates by Trninić et al.29  
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The Ej, 1 and 3 values obtained in the present work are comparable with the corresponding 

values from earlier work on straws and corncobs.  The listed differences cannot be regarded high if 

we keep in mind the high ash content of the agricultural residues (1.5 – 16% vs. 0.2% in the present 

wood samples); the well-known differences in the composition of the hemicelluloses and lignin; the 

different model for the description of the cellulose decomposition; and the much wider range of T(t) 

functions in the present work. 

3.5. Prediction tests.  A usable model should predict approximately the behavior of the samples 

outside of the temperature programs at which the model parameters were determined.  To test this 

feature, a narrower subset of the experiments can be evaluated, and, on this basis, predictions can 

be made for those experiments which were not included into the evaluation.22,26,28,29  In the present 

work the experiments with temperature programs 4 – 9 were selected as a subset evaluated 

separately.  Figures 5 and 6 show that these experiments produced the lowest decomposition rates 

in our dataset; the peaks of their –dm/dt curves, (–dm/dt)peak, were in the range of 0.1×10-3 – 1×10-3 

s-1.  The evaluation of these ten slow experiments by Model Variant III formed the basis for the 

prediction of experiments at temperature programs 1 – 3 (heating rates 10, 20, and 40°C/min) that 

had much higher decomposition rates: the peak of their –dm/dt were in the range of 2×10-3 – 8×10-3 

s-1.  It may be interesting to note that Evaluations 1 – 5 provided nearly the same fit qualities in the 

prediction tests.  Figure 7 displays the results of these prediction tests by Evaluation 3.  As Figure 3 

indicates, the fit quality depends on the range of the extrapolations: it is better at 10°C [when (–

dm/dt)peak2×10-3 s-1] than at 40°C/min  [when (–dm/dt)peak7×10-3–8×10-3 s-1].  Nevertheless, the 

simulated curves approximate reasonably the shape and position of the experimental –dm/dt curves 

in all cases. 
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Figure 7.  Predicting the faster experiments of the study using parameters obtained from the 

evaluation of ten slower experiments in Evaluation 3 by Model Variant III.  (See Figure 5 for the 

notations.) 

 

3.6. Modeling by n-order Kinetics.  The n-order kinetics has the same number of model 

parameters as the DAEM with Gaussian distribution, while its numerical solution is simpler and 

faster.  Its solution is also easier than that of equations 8 – 9.  To test this approach, all evaluations 

were carried out by a model in which the decomposition of the pseudocomponents was described 

by n-order reactions (see eq 7 in paragraph 2.4). 

The results are shown as Model Variant IV in Table 2.  Model Variant IV provided nearly as good 

fit qualities as Model Variant III and the prediction tests outlined in paragraph 3.5 also gave similar 

relative deviations.  Figure 8 shows the results obtained for the 40°C/min experiments in the 

evaluation and prediction tests by the model of n-order reactions using the assumptions of 

Evaluation 3. 
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Figure 8.  The 40°C/min experiments in the evaluation and prediction tests by Model Variant IV 

(n-order kinetics) in Evaluation 3.  (See Figure 5 for the notations.) 

 

The most striking difference between Figure 8 and the corresponding parts of Figures 5 – 7 is the 

peculiar shape of the curve belonging to the third pseudocomponent (green line).  This problem 

appeared in all the five evaluations with the n-order model.  In Model Variants I – III the third 

pseudocomponent could be associated with the lignin decomposition and, at higher temperatures, 

with the slow carbonization of the char.  In the present case, however, the decomposition of the 

hemicelluloses is also described mainly by pseudocomponent 3, as the peak maxima around 320–

340°C of the green curves indicate in Figure 8.  Accordingly pseudocomponent 3 describes most of 

the decomposition of the hemicelluloses plus the lignin pyrolysis plus the slow carbonization of the 

chars.  This is a less clear reflection of the processes in the biomass pyrolysis than the ones expressed 

by the other model variants of the present study.  Besides, the n-order kinetics describes the 
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complexity of the biomass materials in a rather formal way while a DAEM gives a simplified, but 

clear picture on the different reactivities of the different biomass species.  The faster numerical 

calculation of the n-order kinetics has little importance nowadays, keeping in mind the low price 

and high speed of the modern desktop computers. 

The corresponding kinetic parameters are listed in Table 4.  A recent work on corncobs29 and the 

work of Conesa and Domene19 were used for comparison.  The latter work studied five 

lignocellulosic biomasses: a Mediterranean sort of grass, wheat straw, an oceanic seaweed, and 

wastes from urban and agricultural pruning.  There are several works in the biomass literature that 

describe the decomposition kinetics of the pseudocomponents with n-order reactions.  The 

peculiarity of the work of Conesa and Domene was the allowing of high formal reaction order 

values.  This line was followed later by Trninić et al. as well as in the present study.  If the reaction 

order has a lower upper limit, e.g. it is forced to be less than 3, then more pseudocomponents are 

needed for a given fit quality than in the case of DAEM reactions.26  The improvement is connected 

to the long tailing of a peak at high n that can formally approximate the slow, flat tailing sections of 

the DTG curves of lignocellulosic materials. 

The activation energy values for the cellulose decomposition (E2) are similar in Tables 3 and 4, as 

discussed in the next section.  The other parameters are rather diverse.  The parameters belonging 

to the birch and spruce samples are not far from each other in Table 4, but differ very much from 

the values reported for other biomasses as well as for the values in Table 3.  The preexponential 

factors follow the activation energies, as usual.  The very low preexponential factors for the cellulose 

decomposition in the article of Conesa and Domene appear to be misprints. 
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Table 4: The parameters obtained in Evaluation 3 for Model Variant IV and their comparison 

with earlier resultsa 

Sample Birch Spruce Two 

corn-

cobsb 

Five 

biomassesc 

E1 / kJ mol-1 84 111 173 <195> 

E2 / kJ mol-1 175 170 186 <189> 

E3 / kJ mol-1 172 = 261 <157> 

log10 A1/s
-1 5.54 8.70 <14.32> <21.07> 

log10 A2/s
-1 12.15 11.76 14.00 <7.04> 

log10 A3/s
-1 13.63 13.16 19.52 <18.27> 

n1 1.07 2.07 1.90 <3.01> 

n2 0.58 0.61 0.94 <1.34> 

n3 4.71 = 10.38 <6.43> 

c1 0.06 0.05 0.27 n.a. 

c2 0.42 0.37 0.30 n.a. 

c3 0.41 0.44 0.16 n.a. 

a Character ‘=’ indicates parameter values that are identical for both woods.  Brackets < > indicate 

averages.  b Values obtained for two corncob samples from different climates by Trninić et al.29  
c Average values calculated from the results of Conesa and Domene on five lignocellulosic biomass 

materials.19 

 

3.7. Notes on the Kinetics of the Cellulose Decomposition in the Biomass. The common 

element in Tables 3 and 4 is the similarities in the activation energy values of the cellulose 

decomposition, E2.  The E2 values for the birch and spruce samples differ only by 1 kJ/mol between 

Tables 3 and 4.  The cellulose activation energies taken from earlier works are also similar in Tables 

3 and 4, though their range (185-189 kJ/mol) are higher than the ones obtained in the present study 

(169-175 kJ/mol).   Nevertheless, these differences are not high, the lowest and highest E2 values in 

Tables 3 and 4 differ by only 11%.  The activation energies reported in the literature are obviously 
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much more diverse, but we selected for comparison only such works that employed models and 

evaluations similar to the present study. 

In the present work 24 E2 values were obtained in Evaluation 1 – 3 by Model Variants I – IV: 12 

for birch and 12 for spruce.  The birch values varied between 174.0 and 175.6 kJ/mol, while the 

spruce values were between 169.1 and 170.7 kJ/mol.  Evaluation 4 and 5 by Model Variants I – IV 

yielded 8 E2 values that were common for the birch and spruce samples; these values fell between 

171.6 and 172.7 kJ/mol.  Keeping in mind the differences in the modeling and the employed 

assumptions, the particularly narrow ranges of the E2 values indicate that the experiments of the 

present work strongly determine this variable.  We believe that this is connected to the particularly 

wide range of the employed T(t) programs that resulted in nearly a hundred times difference between 

the peak maxima of the slowest and the fastest experiments.  The earlier works quoted in Tables 3 

and 4 reported ca. 10% higher E2 values, as noted above.  It is possible that this difference is 

connected to their narrower range of T(t) programs. 

3.8. Relevance to Torrefaction.  As outlined in the Introduction, the aim of the present model 

was to describe the thermal decomposition both in the temperature domain of the torrefaction and 

at higher temperatures.  The kinetics of the wood drying was not studied because most of the drying 

occurs before the start of the heating in the given apparatus, while the air is flushed out from the 

furnace. 

One can calculate predicted values for characteristics of the torrefaction at any T(t) function by 

the models presented: 

(i) The normalized mass loss after the drying (1-m(t)); 

(ii) The normalized mass loss due to the cellulose decomposition (c22(t)); 

(iii) The reacted fraction of the cellulose (0≤2(t)≤1); 
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(iv) The normalized mass loss due to the non-cellulosic parts of the sample, which is the difference 

of 1-m(t) and c22(t).  

The term “normalized” means a division with the mass observed after the drying, as in the other 

parts of the article.  Table 5 lists (i), (ii) and (iii) from the quantities listed above at various 

temperature – time values.  For this table a 10°C/min heating and a subsequent isothermal section 

was assumed.  The calculations were based on Model Variant III, using the parameters of Table 3.   

The mass loss is higher for birch than for spruce at all temperature – time pairs of Table 5 (though 

the truncation to two decimals hides this at the lowest values).  This can be due to the higher 

hemicellulose content of the birch wood.3  As the data indicate, the devolatilization is negligible at 

200°C.  One can expect here only the decomposition of a small amount of thermally instable species, 

which may be enough to hinder the biological decay (rotting) but cannot increase the energy density 

of the obtained fuels.  It may be interesting to observe that a 60-minute decomposition at 250°C and 

a 10-minute decomposition at 275°C result in nearly the same level of devolatilization for both 

woods.  On the other hand, a prolonged heating at 275°C leads to a considerable loss of the cellulose 

component, which is not desired during torrefaction. 

The comparison of the values in Table 5 with actual torrefaction data is left for a later work.  Note 

that the temperature values in the present case were much closer to the actual temperatures than in 

a macro furnace or in an industrial reactor.  Accordingly, care is needed for such a comparison. 
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Table 5: Simulated characteristics at various isothermal temperaturesa,b,c 

 0 min 10 min 30 min 60 min  120 min 

 Birch Spruce Birch Spruce Birch Spruce Birch Spruce Birch Spruce 

200°C           

1-m(t) 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.02 0.05 0.03 

c22(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

225°C           

1-m(t) 0.01 0.01 0.03 0.03 0.07 0.04 0.10 0.06 0.14 0.09 

c22(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

250°C           

1-m(t) 0.03 0.02 0.10 0.07 0.17 0.11 0.22 0.15 0.27 0.20 

c22(t) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 

2(t) 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.03 

275°C           

1-m(t) 0.08 0.06 0.22 0.16 0.30 0.24 0.35 0.30 0.42 0.38 

c22(t) 0 0.00 0.01 0.01 0.02 0.02 0.04 0.04 0.08 0.07 

2(t) 0 0.00 0.02 0.02 0.04 0.05 0.08 0.10 0.17 0.20 

300°C           

1-m(t) 0.18 0.14 0.35 0.30 0.45 0.42 0.56 0.53 0.71 0.67 

c22(t) 0.00 0.00 0.04 0.03 0.10 0.09 0.20 0.17 0.34 0.28 

2(t) 0.01 0.01 0.08 0.10 0.23 0.26 0.44 0.49 0.76 0.83 

a Model Variant III was used for prediction with the parameters of Table 3.  b Isothermal torrefaction 

was assumed after a 10°C/min heating till the desired temperature.  The time values in the header line 

belong to the isothermal section.  c Three predicted torrefaction characteristics were tabulated at each 

temperature: the normalized mass loss [1-m(t)]; the normalized mass loss due to cellulose decomposition 

[c22(t)]; and the reacted fraction of the cellulose [2(t)]. 

 

4. CONCLUSIONS  

(1) The thermal decomposition of a deciduous and an evergreen wood species were studied at 

slow heating programs, under well-defined conditions.  Nine TGA experiments were carried out for 
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each sample with different temperature programs.  Highly different temperature programs were 

selected to increase the information content available for the modeling.  The ratio of the highest and 

lowest peak maxima was around 100 in the set of the experiments used for the evaluation.  In this 

way the obtained models described the experiments in a wide range of experimental conditions. 

(2)  Several model variants were tested.  The best performance was achieved when the cellulose 

decomposition was described by a submodel that can mimic self-acceleration tendencies.  The 

decomposition of the non-cellulosic parts of the biomass was described by two reactions assuming 

a distributed activation energy model in this case.  The complexity of the applied model reflects the 

complexity of the studied materials.  

(3) The employed model contains 13 unknown parameters for a given biomass.  Part of the kinetic 

parameters could be assumed common for the samples without a substantial worsening of the fit 

quality.  This approach increased the average experimental information for an unknown parameter 

and revealed the similarities in the behavior of the different samples.  In the preferred evaluation 

strategy of the paper the number of model parameters was close to the number of the evaluated DTG 

curves. 

(4) When each partial reaction was described by n-order kinetics, similar fit qualities were 

obtained.  However, the n-order kinetics describes the complexity of the biomass materials in a 

rather formal way. 

(5) The results were checked by prediction tests.  In these tests 10, 20 and 40°C/min experiments 

were simulated by the model parameters obtained from the evaluation of 10 experiments with lower 

reaction rates. 

(6) A table was calculated by the preferred model variant that may provide guidance about the 

extent of devolatilization at various temperature – residence time values during wood torrefaction. 
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NOMENCLATURE 

 = reacted fraction of a component or pseudocomponent (dimensionless) 

 = width parameter (variance) of Gaussian distribution (kJ/mol) 

A = pre-exponential factor (s-1) 

E = activation energy (kJ/mol) or the mean of an activation energy distribution (kJ/mol) 

f = empirical function (eq 9) expressing the change of the reactivity as the reactions proceed 

(dimensionless) 

hk = height of an experimental –dm/dt curve (s-1)  

m = the mass of the sample normalized by the initial dry sample mass (dimensionless) 

n = reaction order (dimensionless) 

of = objective function minimized in the least squares evaluation (dimensionless) 

Nexper = number of experiments evaluated together by the method of least squares 

Nk = number of evaluated data on the kth experimental curve 
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R = gas constant (8.3143×10-3 kJ mol-1 K-1) 

reldev = the deviation between the observed and calculated data expressed as per cent of the 

corresponding peak height 

reldev18 = root mean square of the reldev values of 18 experiments 

t = time (s) 

T = temperature (°C, K) 

z = formal parameter in eq 9 (dimensionless) 

Subscripts: 

i = digitized point on an experimental curve 

j = pseudocomponent 

k = experiment 
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