20 research outputs found

    VEGF and NOTCH in blood vessels, an intricate and fascinating interplay

    Get PDF

    The role of receptor MAS in microglia-driven retinal vascular development

    Get PDF
    Objective: The receptor MAS, encoded by Mas1, is expressed in microglia and its activation has been linked to anti-inflammatory actions. However, microglia are involved in several different processes in the central nervous system, including the promotion of angiogenesis. We therefore hypothesized that the receptor MAS also plays a role in angiogenesis via microglia. Approach and results: To assess the role of MAS on vascular network development, flat-mounted retinas from 3-day-old wild-type (WT) and Mas1−/− mice were subjected to Isolectin B4 staining. The progression of the vascular front was reduced (− 24%, p < 0.0001) and vascular density decreased (− 38%, p < 0.001) in Mas1−/− compared to WT mice with no change in the junction density. The number of filopodia and filopodia bursts were decreased in Mas1−/− mice at the vascular front (− 21%, p < 0.05; − 29%, p < 0.0001, respectively). This was associated with a decreased number of vascular loops and decreased microglial density at the vascular front in Mas1−/− mice (-32%, p < 0.001; − 26%, p < 0.05, respectively). As the front of the developing vasculature is characterized by reduced oxygen levels, we determined the expression of Mas1 following hypoxia in primary microglia from 3-day-old WT mice. Hypoxia induced a 14-fold increase of Mas1 mRNA expression (p < 0.01). Moreover, stimulation of primary microglia with a MAS agonist induced expression of Notch1 (+ 57%, p < 0.05), Dll4 (+ 220%, p  < 0.001) and Jag1 (+ 137%, p < 0.001), genes previously described to mediate microglia/endothelial cell interaction during angiogenesis. Conclusions: Our study demonstrates that the activation of MAS is important for microglia recruitment and vascular growth in the developing retina

    Force Sensing by Piezo Channels in Cardiovascular Health and Disease

    No full text
    Mechanical forces are fundamental in cardiovascular biology, and deciphering the mechanisms by which they act remains a testing frontier in cardiovascular research. Here, we raise awareness of 2 recently discovered proteins, Piezo1 and Piezo2, which assemble as transmembrane triskelions to combine exquisite force sensing with regulated calcium influx. There is emerging evidence for their importance in endothelial shear stress sensing and secretion, NO generation, vascular tone, angiogenesis, atherosclerosis, vascular permeability and remodeling, blood pressure regulation, insulin sensitivity, exercise performance, and baroreceptor reflex, and there are early suggestions of relevance to cardiac fibroblasts and myocytes. Human genetic analysis points to significance in lymphatic disease, anemia, varicose veins, and potentially heart failure, hypertension, aneurysms, and stroke. These channels appear to be versatile force sensors, used creatively to inform various force-sensing situations. We discuss emergent concepts and controversies and suggest that the potential for new important understanding is substantial

    Resistance to retinopathy development in obese, diabetic and hypertensive ZSF1 rats: an exciting model to identify protective genes

    Get PDF
    Diabetic retinopathy (DR) is one of the major complications of diabetes, which eventually leads to blindness. Up to date, no animal model has yet shown all the co-morbidities often observed in DR patients. Here, we investigated whether obese 42 weeks old ZSF1 rat, which spontaneously develops diabetes, hypertension and obesity, would be a suitable model to study DR. Although arteriolar tortuosity increased in retinas from obese as compared to lean (hypertensive only) ZSF1 rats, vascular density pericyte coverage, microglia number, vascular morphology and retinal thickness were not affected by diabetes. These results show that, despite high glucose levels, obese ZSF1 rats did not develop DR. Such observations prompted us to investigate whether the expression of genes, possibly able to contain DR development, was affected. Accordingly, mRNA sequencing analysis showed that genes (i.e. Npy and crystallins), known to have a protective role, were upregulated in retinas from obese ZSF1 rats. Lack of retina damage, despite obesity, hypertension and diabetes, makes the 42 weeks of age ZSF1 rats a suitable animal model to identify genes with a protective function in DR. Further characterisation of the identified genes and downstream pathways could provide more therapeutic targets for the treat DR

    Childhood predictors of adolescent behaviour: The prospective association of familial factors with meeting physical activity guidelines

    Get PDF
    Little is known about the longitudinal association of familial socio-demographic factors, behaviours, attitudes, or home environment with meeting physical activity guidelines. Our objective was to a) describe 4-year change in the prevalence of meeting guidelines, and characteristics of participants across categories of physical activity maintenance, and b) identify familial factors in childhood that are longitudinally associated with meeting guidelines in adolescence. Data on 17 parent- and child-reported family variables and objectively measured physical activity (ActiGraph GT1M) were available from 406 children (10.3 ± 0.3 years, 53.5% female) participating in the SPEEDY study. Average duration of week- and weekend day moderate-to-vigorous physical activity (MVPA, ≥ 2000 cpm) at baseline and follow-up (14.3 ± 0.3 years) were calculated to determine whether participants met 60 min MVPA/day guidelines at each assessment. Descriptives were calculated across four MVPA change categories. Multi-level logistic regression examined the association of baseline familial factors with meeting guidelines at follow-up, adjusting for sex, baseline physical activity, family socio-economic position, and school clustering. At follow-up, 51.5% and 36.1% of adolescents met guidelines on weekdays and weekend days, respectively (baseline: 68.0%, 67.2%). Girls were less likely than boys to remain sufficiently active, particularly on weekdays. Family social support was positively associated with adolescents meeting guidelines at weekends (OR 1.2; 95% CI 1.0-1.4). The presence of play equipment at home was negatively associated with meeting guidelines on weekdays (OR 0.5; 95% CI 0.3-0.8). Interventions that foster parent's facilitation of physical activity may help to encourage the upkeep of healthy behaviours during the transition from childhood to adolescence.The SPEEDY study is funded by the National Prevention Research Initiative (G0501294) (http://www.npri.org.uk), consisting of the following Funding Partners: British Heart Foundation; Cancer Research UK; Department of Health; Diabetes UK; Economic and Social Research Council; Medical Research Council; Health and Social Care Research and Development Office for the Northern Ireland; Chief Scientist Office, Scottish Government Health Directorates; Welsh Assembly Government and World Cancer Research Fund. The work was also undertaken under the auspices of the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence which is funded by the British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, the National Institute for Health Research, and the Wellcome Trust. Kirsten Corder reports receiving the following grants: Lead Applicant - A cluster randomised controlled trial to evaluate the effectiveness and cost-effectiveness of the GoActive programme to increase physical activity among 13–14 year-old adolescents. Project: 13/90/18 National Institute for Health Research Public Health Research Programme Sept 2015 – Feb 2019. Co-Applicant - Opportunities within the school environment to shift the distribution of activity intensity in adolescents. Department of Health Policy Research Programme. Dec 2013 – Nov 2016. Kirsten Corder is a Director of Ridgepoint Consulting Limited, an operational improvement consultancy

    Arteriovenous malformations in hereditary haemorrhagic telangiectasia:looking beyond ALK1-NOTCH interactions

    No full text
    Hereditary haemorrhagic telangiectasia (HHT) is characterized by the development of arteriovenous malformations--enlarged shunts allowing arterial flow to bypass capillaries and enter directly into veins. HHT is caused by mutations in ALK1 or Endoglin; however, the majority of arteriovenous malformations are idiopathic and arise spontaneously. Idiopathic arteriovenous malformations differ from those due to loss of ALK1 in terms of both location and disease progression. Furthermore, while arteriovenous malformations in HHT and Alk1 knockout models have decreased NOTCH signalling, some idiopathic arteriovenous malformations have increased NOTCH signalling. The pathogenesis of these lesions also differs, with loss of ALK1 causing expansion of the shunt through proliferation, and NOTCH gain of function inducing initial shunt enlargement by cellular hypertrophy. Hence, we propose that idiopathic arteriovenous malformations are distinct from those of HHT. In this review, we explore the role of ALK1-NOTCH interactions in the development of arteriovenous malformations and examine a possible role of two signalling pathways downstream of ALK1, TMEM100 and IDs, in the development of arteriovenous malformations in HHT. A nuanced understanding of the precise molecular mechanisms underlying idiopathic and HHT-associated arteriovenous malformations will allow for development of targeted treatments for these lesions

    Shear stress activates ADAM10 sheddase to regulate Notch1 via the Piezo1 force sensor in endothelial cells

    No full text
    Mechanical force is a determinant of Notch signalling but the mechanism of force detection and its coupling to Notch are unclear. We propose a role for Piezo1 channels, which are mechanically-activated non-selective cation channels. In cultured microvascular endothelial cells, Piezo1 channel activation by either shear stress or a chemical agonist Yoda1 activated a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), a Ca2+-regulated transmembrane sheddase that mediates S2 Notch1 cleavage. Consistent with this observation, we found Piezo1-dependent increase in the abundance of Notch1 intracellular domain (NICD) that depended on ADAM10 and the downstream S3 cleavage enzyme, g-secretase. Conditional endothelial-specific disruption of Piezo1 in adult mice suppressed the expression of multiple Notch1 target genes in hepatic vasculature, suggesting constitutive functional importance in vivo. The data suggest that Piezo1 is a mechanism conferring force sensitivity on ADAM10 and Notch1 with downstream consequences for sustained activation of Notch1 target genes and potentially other processes

    Impaired SMAD1/5 Mechanotransduction and Cx37 (Connexin37) Expression Enable Pathological Vessel Enlargement and Shunting

    No full text
    Objective: Impaired ALK1 (activin receptor–like kinase-1)/Endoglin/BMP9 (bone morphogenetic protein 9) signaling predisposes to arteriovenous malformations (AVMs). Activation of SMAD1/5 signaling can be enhanced by shear stress. In the genetic disease hereditary hemorrhagic telangiectasia, which is characterized by arteriovenous malformations, the affected receptors are those involved in the activation of mechanosensitive SMAD1/5 signaling. To elucidate how genetic and mechanical signals interact in AVM development, we sought to identify targets differentially regulated by BMP9 and shear stress. Approach and Results: We identify Cx37 (Connexin37) as a differentially regulated target of ligand-induced and mechanotransduced SMAD1/5 signaling. We show that stimulation of endothelial cells with BMP9 upregulated Cx37, whereas shear stress inhibited this expression. This signaling was SMAD1/5-dependent, and in the absence of SMAD1/5, there was an inversion of the expression pattern. Ablated SMAD1/5 signaling alone caused AVM-like vascular malformations directly connecting the dorsal aorta to the inlet of the heart. In yolk sacs of mouse embryos with an endothelial-specific compound heterozygosity for SMAD1/5, addition of TNFα (tumor necrosis factor-α), which downregulates Cx37, induced development of these direct connections bypassing the yolk sac capillary bed. In wild-type embryos undergoing vascular remodeling, Cx37 was globally expressed by endothelial cells but was absent in regions of enlarging vessels. TNFα and endothelial-specific compound heterozygosity for SMAD1/5 caused ectopic regions lacking Cx37 expression, which correlated to areas of vascular malformations. Mechanistically, loss of Cx37 impairs correct directional migration under flow conditions. Conclusions: Our data demonstrate that Cx37 expression is differentially regulated by shear stress and SMAD1/5 signaling, and that reduced Cx37 expression is permissive for capillary enlargement into shunts

    Shear stress and VE-cadherin

    No full text
    Objective- Vascular fusion represents an important mechanism of vessel enlargement during development; however, its significance in postnatal vessel enlargement is still unknown. During fusion, 2 adjoining vessels merge to share 1 larger lumen. The aim of this research was to identify the molecular mechanism responsible for vascular fusion. Approach and Results- We previously showed that both low shear stress and DAPT ( N-[ N-(3,5-difluorophenacetyl)-L-alanyl]- S-phenylglycine t-butyl ester) treatment in the embryo result in a hyperfused vascular plexus and that increasing shear stress levels could prevent DAPT-induced fusion. We, therefore, investigated vascular endothelial-cadherin (VEC) phosphorylation because this is a common downstream target of low shear stress and DAPT treatment. VEC phosphorylation increases after DAPT treatment and decreased shear stress. The increased phosphorylation occurred independent of the cleavage of the Notch intracellular domain. Increasing shear stress rescues hyperfusion by DAPT treatment by causing the association of the phosphatase vascular endothelial-protein tyrosine phosphatase with VEC, counteracting VEC phosphorylation. Finally, Src (proto-oncogene tyrosine-protein kinase Src) inhibition prevents VEC phosphorylation in endothelial cells and can rescue hyperfusion induced by low shear stress and DAPT treatment. Moesin, a VEC target that was previously reported to mediate endothelial cell rearrangement during lumenization, relocalizes to cell membranes in vascular beds undergoing hyperfusion. Conclusions- This study provides the first evidence that VEC phosphorylation, induced by DAPT treatment and low shear stress, is involved in the process of fusion during vascular remodeling
    corecore