6 research outputs found

    Applied Genomics in the Clinic

    Get PDF
    "Applied genomics in the Clinic" was organised in Istanbul on 17-19 October 2012. The main aim of the workshop was to get an overview of the state of the art of applied genomics in the clinical context in accession and candidate countries, as well as new members, to share best practices in EU and to evaluate these in the light of a public health perspective. There is a clear divide behind the genomic services offered in a country and the awareness among research scientists of the available genomic applications and the future impact of genomic technologies on health services and clinical approaches. In all countries there are a number of common obstacles that delay penetration of genomic technologies in clinical applications : lack of recognised experts ( medical genetics HAS to be recognised as a medical specialty) lack of a regulatory framework that involves political determination of decision makers, lack of common databases on methods and experts, lack of ongoing education for physicians and most importantly reimbursement of testing. Stronger connections and collaborations with the EU for research and technology transfer will function as a leverage for these countries in adopting genomic tools and harmonising the quality of healthcare services they offer. It is very important to establish recognized objective state of the art guidelines for application of genomic technologies in clinical practice. Such guidelines adopted by countries will form the basis of reimbursement policies at national and cross border levels. In addition establishing reliable, not for profit, open access databases for building reference datasets for correct and efficient interpretation of complex data generated by advanced genomic technologies will speed up adoption of the technology in the clinic.JRC.I.1-Chemical Assessment and Testin

    A chromosome conformation capture ordered sequence of the barley genome

    Get PDF
    201

    WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene

    Get PDF
    Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait

    Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. Acknowledgements: We especially thank all volunteers who participated in our study. This study made use of data generated by the ‘Genome of the Netherlands’ project, which is funded by the Netherlands Organization for Scientific Research (grant no. 184021007). The data were made available as a Rainbow Project of BBMRI-NL. Samples were contributed by LifeLines (http://lifelines.nl/lifelines-research/general), the Leiden Longevity Study (http://www.healthy-ageing.nl; http://www.langleven.net), the Netherlands Twin Registry (NTR: http://www.tweelingenregister.org), the Rotterdam studies (http://www.erasmus-epidemiology.nl/rotterdamstudy) and the Genetic Research in Isolated Populations programme (http://www.epib.nl/research/geneticepi/research.html#gip). The sequencing was carried out in collaboration with the Beijing Institute for Genomics (BGI). Cardiovascular Health Study: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, HHSN268200960009C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL105756 and HL103612 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. The CROATIA cohorts would like to acknowledge the invaluable contributions of the recruitment teams in Vis, Korcula and Split (including those from the Institute of Anthropological Research in Zagreb and the Croatian Centre for Global Health at the University of Split), the administrative teams in Croatia and Edinburgh and the people of Vis, Korcula and Split. SNP genotyping was performed at the Wellcome Trust Clinical Research Facility in Edinburgh for CROATIA-Vis, by Helmholtz Zentrum München, GmbH, Neuherberg, Germany for CROATIA-Korcula and by AROS Applied Biotechnology, Aarhus, Denmark for CROATIA-Split. They would also like to thank Jared O’Connell for performing the pre-phasing for all cohorts before imputation. The ERF study as a part of EuroSPAN (European Special Populations Research Network) was supported by European Commission FP-6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the programme ‘Quality of Life and Management of the Living Resources’ of 5th Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by joint grant from the Netherlands Organisation for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). This research was financially supported by BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007). Statistical analyses for the ERF study were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org), which is financially supported by the Netherlands Scientific Organization (NWO 480-05-003 PI: Posthuma) along with a supplement from the Dutch Brain Foundation and the VU University Amsterdam. We are grateful to all study participants and their relatives, general practitioners and neurologists for their contributions and to P. Veraart for her help in genealogy, J. Vergeer for the supervision of the laboratory work and P. Snijders for his help in data collection. The FamHS is funded by a NHLBI grant 5R01HL08770003, and NIDDK grants 5R01DK06833603 and 5R01DK07568102. The Framingham Heart Study SHARe Project for GWAS scan was supported by the NHLBI Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix Inc for genotyping services (Contract No. N02-HL-6-4278). DNA isolation and biochemistry were partly supported by NHLBI HL-54776. A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at the Boston University School of Medicine and Boston Medical Center. We are grateful to Han Chen for conducting the 1000G imputation. The Family Heart Study was supported by the by grants R01-HL-087700 and R01-HL-088215 from the National Heart, Lung, and Blood Institute (NHLBI). We would like to acknowledge the invaluable contributions of the families who took part in the Generation Scotland: Scottish Family Health Study, the general practitioners and Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes academic researchers, IT staff, laboratory technicians, statisticians and research managers. SNP genotyping was performed at the Wellcome Trust Clinical Research Facility in Edinburgh. GS:SFHS is funded by the Scottish Executive Health Department, Chief Scientist Office, grant number CZD/16/6. SNP genotyping was funded by the Medical Research Council, United Kingdom. We wish to acknowledge the services of the LifeLines Cohort Study, the contributing research centres delivering data to LifeLines and all the study participants. MESA Whites and the MESA SHARe project are conducted and supported by contracts N01-HC-95159 through N01-HC-95169 and RR-024156 from the NHLBI. Funding for MESA SHARe genotyping was provided by NHLBI Contract N02.HL.6.4278. MESA Family is conducted and supported in collaboration with MESA investigators; support is provided by grants and contracts R01HL071051, R01HL071205, R01HL071250, R01HL071251, R01HL071252, R01HL071258 and R01HL071259. We thank the participants of the MESA study, the Coordinating Center, MESA investigators and study staff for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org. Netherland Twin Register (NTR) and Netherlands Study of Depression and Anxiety (NESDA): Funding was obtained from the Netherlands Organization for Scientific Research (NWO) and MagW/ZonMW grants Middelgroot-911-09-032, Spinozapremie 56-464-14192, Geestkracht programme of the Netherlands Organization for Health Research and Development (Zon-MW, grant number 10-000-1002), Center for Medical Systems Biology (CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL, 184.021.007), VU University’s Institute for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam (NCA); the European Science Foundation (ESF, EU/QLRT-2001-01254), the European Community’s Seventh Framework Program (FP7/2007-2013), ENGAGE (HEALTH-F4-2007-201413); the European Science Council (ERC Advanced, 230374); and the European Research Council (ERC-284167). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health, Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995). PREVEND genetics is supported by the Dutch Kidney Foundation (Grant E033), the EU project grant GENECURE (FP-6 LSHM CT 2006 037697), the National Institutes of Health (grant 2R01LM010098), The Netherlands Organisation for Health Research and Development (NWO-Groot grant 175.010.2007.006, NWO VENI grant 916.761.70, ZonMw grant 90.700.441) and the Dutch Inter University Cardiology Institute Netherlands (ICIN). The PROSPER study was supported by an investigator-initiated grant obtained from Bristol-Myers Squibb. J.W.J is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). Genotyping was supported by the seventh framework programme of the European commission (grant 223004) and by the Netherlands Genomics Initiative (Netherlands Consortium for Healthy Aging grant 050-060-810). The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII) and the Municipality of Rotterdam. We are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project no. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating the GWAS database.Peer reviewedPublisher PD

    WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene

    No full text
    Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait

    Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels

    No full text
    Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (∼35,000 samples) with the population-specific reference panel created by the Genome of the Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10-4), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C =0.135, βTC =0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR
    corecore