226 research outputs found

    The pulsar force-free magnetosphere linked to its striped wind: time-dependent pseudo-spectral simulations

    Full text link
    (abridged) Pulsar activity and its related radiation mechanism are usually explained by invoking some plasma processes occurring inside the magnetosphere. Despite many detailed local investigations, the global electrodynamics around those neutron stars remains poorly described. Better understanding of these compact objects requires a deep and accurate knowledge of their immediate electromagnetic surrounding within the magnetosphere and its link to the relativistic pulsar wind. The aim of this work is to present accurate solutions to the nearly stationary force-free pulsar magnetosphere and its link to the striped wind, for various spin periods and arbitrary inclination. To this end, the time-dependent Maxwell equations are solved in spherical geometry in the force-free approximation using a vector spherical harmonic expansion of the electromagnetic field. An exact analytical enforcement of the divergenceless of the magnetic part is obtained by a projection method. Special care has been given to design an algorithm able to look deeply into the magnetosphere with physically realistic ratios of stellar RR_* to light-cylinder \rlight radius. We checked our code against several analytical solutions, like the Deutsch vacuum rotator solution and the Michel monopole field. We also retrieve energy losses comparable to the magneto-dipole radiation formula and consistent with previous similar works. Finally, for arbitrary obliquity, we give an expression for the total electric charge of the system. It does not vanish except for the perpendicular rotator. This is due to the often ignored point charge located at the centre of the neutron star. It is questionable if such solutions with huge electric charges could exist in reality except for configurations close to an orthogonal rotator. The charge spread over the stellar crust is not a tunable parameter as is often hypothesized.Comment: 16 pages, 13 figures, accepted by MNRA

    Spectral Methods for Hyperbolic Problems

    Get PDF
    We review spectral methods for the solution of hyperbolic problems. To keep the discussion concise, we focus on Fourier spectral methods and address key issues of accuracy, stability, and convergence of the numerical approximations. Polynomial methods are discussed when these lead to qualitatively different schemes as, for instance, when boundary conditions are required. The discussion includes nonlinear stability and the use of filters and post-processing techniques to minimize or overcome the Gibbs phenomenon

    Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings

    Get PDF
    In this work we consider (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for elasticity problems in affinley parametrized geometries. The essential ingredients of the methodology are: a Galerkin projection onto a low-dimensional space associated with a smooth "parametric manifold" - dimension reduction, an efficient and effective greedy sampling methods for identification of optimal and numerically stable approximations - rapid convergence, an a posteriori error estimation procedures - rigorous and sharp bounds for the functional outputs related with the underlying solution or related quantities of interest, like stress intensity factor, and Offline-Online computational decomposition strategies - minimum marginal cost for high performance in the real-time and many-query (e.g., design and optimization) contexts. We present several illustrative results for linear elasticity problem in parametrized geometries representing 2D Cartesian or 3D axisymmetric configurations like an arc-cantilever beam, a center crack problem, a composite unit cell or a woven composite beam, a multi-material plate, and a closed vessel. We consider different parametrization for the systems: either physical quantities - to model the materials and loads - and geometrical parameters - to model different geometrical configurations - with isotropic and orthotropic materials working in plane stress and plane strain approximation. We would like to underline the versatility of the methodology in very different problems. As last example we provide a nonlinear setting with increased complexity

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Big Earth Data for Cultural Heritage in the Copernicus Era

    Get PDF
    Digital data is stepping in its golden age characterized by an increasing growth of both classical and emerging big earth data along with trans- and multidisciplinary methodological approaches and services addressed to the study, preservation and sustainable exploitation of cultural heritage (CH). The availability of new digital technologies has opened new possibilities, unthinkable only a few years ago for cultural heritage. The currently available digital data, tools and services with particular reference to Copernicus initiatives make possible to characterize and understand the state of conservation of CH for preventive restoration and opened up a frontier of possibilities for the discovery of archaeological sites from above and also for supporting their excavation, monitoring and preservation. The different areas of intervention require the availability and integration of rigorous information from different sources for improving knowledge and interpretation, risk assessment and management in order to make more successful all the actions oriented to the preservation of cultural properties. One of the biggest challenges is to fully involve the citizen also from an emotional point of view connecting “pixels with people” and “bridging” remote sensing and social sensing

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    The fundamental constants and their variation: observational status and theoretical motivations

    Full text link
    This article describes the various experimental bounds on the variation of the fundamental constants of nature. After a discussion on the role of fundamental constants, of their definition and link with metrology, the various constraints on the variation of the fine structure constant, the gravitational, weak and strong interactions couplings and the electron to proton mass ratio are reviewed. This review aims (1) to provide the basics of each measurement, (2) to show as clearly as possible why it constrains a given constant and (3) to point out the underlying hypotheses. Such an investigation is of importance to compare the different results, particularly in view of understanding the recent claims of the detections of a variation of the fine structure constant and of the electron to proton mass ratio in quasar absorption spectra. The theoretical models leading to the prediction of such variation are also reviewed, including Kaluza-Klein theories, string theories and other alternative theories and cosmological implications of these results are discussed. The links with the tests of general relativity are emphasized.Comment: 56 pages, l7 figures, submitted to Rev. Mod. Phy

    Numerical study of nonlinear heat transfer from a wavy surface to a high permeability medium with pseudo-spectral and smoothed particle methods

    Get PDF
    Motivated by petro-chemical geological systems, we consider the natural convection boundary layer flow from a vertical isothermal wavy surface adjacent to a saturated non-Darcian high permeability porous medium. High permeability is considered to represent geologically sparsely packed porous media. Both Darcian drag and Forchheimer inertial drag terms are included in the velocity boundary layer equation. A high permeability medium is considered. We employ a sinusoidal relation for the wavy surface. Using a set of transformations, the momentum and heat conservation equations are converted from an (x, y) coordinate system to an (x,η) dimensionless system. The two-point boundary value problem is then solved numerically with a pseudo-spectral method based on combining the Bellman–Kalaba quasi linearization method with the Chebyschev spectral collocation technique (SQLM). The SQLM computations are demonstrated to achieve excellent correlation with smoothed particle hydrodynamic (SPH) Lagrangian solutions. We study the effect of Darcy number (Da), Forchheimer number (Fs), amplitude wavelength (A) and Prandtl number (Pr) on the velocity and temperature distributions in the regime. Local Nusselt number is also computed for selected cases. The study finds important applications in petroleum engineering and also energy systems exploiting porous media and undulating (wavy) surface geometry. The SQLM algorithm is shown to be exceptionally robust and achieves fast convergence and excellent accuracy in nonlinear heat transfer simulations
    corecore