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We review spectral methods for the solution of hyperbolic problems.

To keep the discussion concise, we focus on Fourier spectral methods and

address key issues of accuracy, stability, and convergence of the numerical

approximations. Polynomial methods are discussed when these lead to

qualitatively different schemes as, for instance, when boundary conditions

are required. The discussion includes nonlinear stability and the use of

filters and post-processing techniques to minimize or overcome the Gibbs

phenomenon.
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1. INTRODUCTION

The theory and application of spectral methods for the solution of partial dif-

ferential equations has traditionally focused on problems with a certain amount of

inherent regularity of the solutions, e.g., elliptic/parabolic problems. The applica-

tion that is perhaps most responsible for the widespread use of spectral methods is

the incompressible Navier-Stokes equations [8, 11, 52].

At the heart of a spectral method lies the assumption that the solution, u(x, t), to

a partial differential equation can be expressed by a series of smooth basis functions

as

u(x, t) ' uh(x, t) =

N∑
n=0

ûn(t)φn(x) . (1)

The choice of the basis φn(x) and the way in which the expansion coefficients ûn(t)

are computed results in different methods. Let us first assume that φn(x) : [a, b]→
R is orthogonal in L2

w such that
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148024387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J.S. HESTHAVEN

ûn(t) =
1

γn
(u, φn)w , (2)

where

(f, g)w =

∫ b

a

f(x)g(x)w(x) dx, γn = (φn, φn)w , (3)

and w(x) is an L1-integrable weight function. This defines the truncated projection

of the function u(x, t) as

PNu(x, t) =

N∑
n=0

ûn(t)φn(x) . (4)

To understand the accuracy of this truncated expansion, consider

‖u(x, t)− PNu(x, t)‖2w =

∞∑
n=N+1

γnû
2
n,

i.e., the accuracy depends solely on the decay of the expansion coefficients. To

understand their behavior, assume that the basis satisfies

[
d

dx
q(x)

d

dx
+ λnw(x)

]
φn(x) = [L+ λnw(x)]φn(x) = 0, x ∈ [a, b]. (5)

In the simplest case of q(x) = w(x) = 1, x ∈ [0, 2π], the trigonometric functions,

φn(x) = exp(inx) satisfy this with λn = n2. For the more general case of p(x) and

w(x) with x ∈ [−1, 1], we recover all the classic orthogonal polynomials provided

q(±1) = 0 [55]. In this case, (5) is the singular Sturm-Liouville problem with

λn ∝ n2. Prominent examples of these polynomial basis functions include Legendre

and Chebyshev polynomials.

Under the assumption of (5), integration by parts of (2) yields

ûn =
1

γn
(u, φn)w =

−1

γnλn

(
[uqφ′n − u′qφn]

b
a +

(
L
w
u, φn

)
w

)
.

If we now further assume that the solution u and the basis φn is periodic in [a, b],

as for the trigonometric basis, or q(a) = q(b) = 0 as for the polynomial basis, we

recover

ûn =
−1

γnλn

(
L
w
u, φn

)
w

.

Under the assumption that u is sufficiently smooth and periodic, repeating this p

times yields
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ûn =
1

γn

(
−1

λn

)p((L
w

)p
u, φn

)
w

.

This we may now bound as

|ûn| ≤
1

γnλ
p
n
‖u(2p)‖w ≤

C

γnn2p
‖u(2p)‖w.

This highlights the direct connection between the regularity of the solution u and

the decay of the expansion coefficients. This yields the estimate

‖u(x, t)− PNu(x, t)‖2w ≤ CN−p‖u(p)‖w. (6)

In the event that u(x, t) is analytic we recover the remarkable property [57]

‖u− PNu‖w ≤ CN−p‖u(p)‖w ∼ C
p!

Np
‖u‖w ∼ Ce−cN‖u‖w ,

known as spectral accuracy or spectral convergence. This is the property that gives

name to spectral methods.

The use of spectral methods for the solution of hyperbolic problems has tradi-

tionally been viewed as problematic and only more recently have such methods

seen a wider use. The reasons for the perceived difficulty are several. Contrary

to parabolic and elliptic problems, there is no physical dissipation inherent in the

hyperbolic problem. This implies that even minor errors and under resolved phe-

nomena can cause the scheme to become unstable.

Perhaps the most important reason, however, for the slow acceptance of spectral

methods for solving hyperbolic conservation laws is the appearance of the Gibbs

phenomenon as finite time discontinuities develop in the solution. Left alone, the

nonlinear mixing of the Gibbs oscillations with the approximate solution will even-

tually cause the scheme to become unstable. Moreover, even if stability is main-

tained for sufficiently long time, the computed solution appears to be only first

order accurate in which case the use of a high-order method is questionable. More

fundamental issues of conservation and the ability of the scheme to compute the

correct entropy solution to conservation laws have also caused considerable concern

among practitioners and theoreticians alike.

While many of these issues are genuine and require careful attention, they do

not cause the spectral methods to fail if applied correctly. This was indicated

already to in early work around 1980 [49, 44, 25] where the first numerical solution

of problems with discontinuous solutions and general nonlinear conservation laws

were presented.

To understand the potential of spectral methods for solving conservation laws

problems, we need to dig deeper into the development and analysis of these meth-

ods. To keep the discussion brief we focus on Fourier spectral methods and discuss

key developments in this context. However, when appropriate, we revisit qualitative

differences induced by the use of a polynomial basis. For further details, in par-

ticular for polynomials methods and more complex applications, we refer available

texts and reviews, e.g., [3, 2, 18, 63, 5, 24, 53, 42]
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The remainder of this chapter is organized as follows. Next, we revisit the spectral

expansion and different ways to express this. We also outline the key approxima-

tion results of the continuous and discrete expansions for smooth and non-smooth

functions. In the subsequent Section 3 we introduce Fourier spectral methods and

discuss their stability for linear problems. We shall also discuss polynomial methods

and techniques for the imposing general boundary conditions, leading to additional

complications. In Section 4 we return to the Fourier spectral methods, now with a

focus on nonlinear problems and discuss stability and convergence for such prob-

lems. Section 5 discusses ways to overcome the impact of the Gibbs phenomenon

on the global accuracy. Throughout the discussion we strive to include sufficient

references to allow the reader to pursue more advanced topics.

2. THE SPECTRAL EXPANSION

We focus on spectral methods based on the Fourier expansion

PNu(x) =

N∑
n=−N

ûn exp(inx) . (7)

Here and in the following we suppress the explicit time-dependency of u(x, t) for

simplicity.

The expansion coefficients are obtained directly as

ûn =
1

2π
(u, exp(inx)) =

1

2π

∫ 2π

0

u(x) exp(−inx) dx , (8)

through the orthogonality of the basis in the inner product

(f, g) =

∫ 2π

0

fg dx , ‖f‖2 =

∫ 2π

0

|f |2 dx ,

with the associated norm, ‖ · ‖.
Once the expansion is known, we can evaluare spatial derivatives of the function

as

dpu(x)

dxp
' dpPNu(x)

dxp
=

N∑
n=−N

(in)pûnφn(x) =

N∑
n=−N

û(p)n φn(x) ,

i.e., û
(p)
n = (in)pûn, for the approximation of an arbitrary derivative of a function,

given by its Fourier coefficients.

2.1. Smooth problems

We have already discussed the close connection between regularity of the function

and accuracy of the truncated Fourier expansion. While the algebra involved is

quantitatively different when a different basis and norm is used, the results for a

basis comprising classic orthogonal polynomials is qualitative the same as in (6),

i.e., there is a direct relationship between the accuracy of the spectral expansion

and the regularity of the function being approximated.
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Results similar to (6) are also available in higher norms. For the Fourier series

we have [38]

‖u− PNu‖Wp ≤ C(p, q)Np−q‖u‖W q , (9)

provided only that 0 ≤ p ≤ q. Here, we have the Sobolev norm

‖u‖2W q =

q∑
s=0

‖u(s)‖2 ,

to measure the error on the derivatives. The results for the classic polynomials are

qualitatively similar [6, 3].

Results for pointwise assuracy are harder to obtain. For the truncated Fourier

series one recovers [8]

‖u− PNu‖L∞ ≤ C(q)(1 + logN)N−q‖u(q)‖L∞ ,

where the L∞-norm measures the maximum pointwise error.This indicates that we

expect a poor pointwise accuracy for problems with low regularity. This happens

both locally, where convergence is lost at discontinuous point, and in the entire

domain containing the discontinuity due to the Gibbs phenomenon as discussed in

more detail in Section 2.2.

The computation of the Fourier coefficients, ûn, poses a problem as one can-

not in general evaluate the inner product. The natural solution is to introduce a

quadrature approximation to (8) on the form

ũn =
1

2N + 1

2N∑
j=0

u(xj) exp(−inxj) . (10)

We recognize this as the trapezoidal rule with the equidistant grid

xj =
2π

2N + 1
j, j = 0, . . . , 2N. (11)

This is known as the odd method, due to the odd number of grid points. Histori-

cally, an even number of points have been preferred, leading to minor quantitative

differences but no qualitative differences. We refer to [38] for through discussion of

this.

As N in (10) increases one hopes that ũn is a good approximation to ûn. To

quantify this, we can express ũn using ûn as

ũn = ûn +

m=∞∑
m=−∞
m 6=0

ûn+2Nm ,

where the second term is termed the aliasing error. The aliasing error reflects that

certain basis components cannot be distinguished on a finite grid, causing highly
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oscillatory components to be misinterpreted as slowly varying basis components.

While the analysis is more complex in the polynomial case, the introduction of the

aliasing error by the grid remains qualitatively the same [6, 3].

Understanding the accuracy of the discrete expansion thus reduces to an analysis

of the error caused by the aliasing error. For the Fourier basis, the analysis in[44]

shows that the aliasing error and the truncation error is of the same order, i.e., the

result in (6) carries over to the case of interpolation in the Fourier case. This is

likewise the case for the general result (9).

Since the use of the modal expansions requires the introduction of a finite grid

one could question the need to consider special basis functions at all. Indeed, given

a specific nodal set, xj , we can construct a global interpolation

INu(x) =

2N∑
j=0

u(xj)lj(x) ,

where the Lagrange interpolating polynomials, lj(x), takes the form

lj(x) =
q(x)

(x− xj)q′(xj)
, q(x) =

2N∏
j=0

(x− xj) .

Clearly, if the xj ’s are distinct, lj(x) is uniquely determined as the polynomial of

order 2N , specified at 2N + 1 points. We can directly explore this to approximate

derivatives of u(x). In particular, if we restrict attention to the approximation of

the derivative of u(x) at the grid points, xj , we have

du

dx

∣∣∣∣
xi

' dINu
dx

∣∣∣∣
xi

=

2N∑
j=0

u(xj)
dlj
dx

∣∣∣∣
xi

=

2N∑
j=0

u(xj)Dij ,

where Dij is a differentiation matrix with the entries

Dij =

{
(−1)i+j

2

[
sin
(

π
2N+1 (i− j)

)]−1
i 6= j

0 i = j
. (12)

The global nature of the interpolation implies that the differentiation matrix is full.

We also note that D is skew-symmetric, a property that does not carry over to

polynomial methods [38].

2.2. Non-smooth problems

If the solution possesses significant regularity we can expect the spectral ex-

pansion to be highly efficient as a representation of the solution and its spatial

derivatives.

However, for problems with only limited regularity the picture is more complex

and the above results do not inform us much about the accuracy of the approx-

imation of such solutions. In particular, if the solution is only piecewise smooth

only convergence in mean is ensured while the question of pointwise convergence

remains open.
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It is by now a classical result that the Fourier series, Eq.(7), in the neighborhood

of a point of discontinuity, x0, behaves as [27]

PNu
(
x0 +

2z

2N + 1

)
∼ 1

2

[
u(x+0 ) + u(x−0 )

]
+

1

π

[
u(x+0 )− u(x−0 )

]
Si(z) ,

where z is a constant and Si(z) signifies the Sine-integral. Away from the point of

discontinuity, x0, we recover linear pointwise convergence as Si(z) ' π
2 for z large.

Close to the point of discontinuity, however, we observe that for any fixed value

of z, pointwise convergence is lost regardless of the value of N . This non-uniform

convergence and loss of pointwise convergence is the celebrated Gibbs phenomenon

and the oscillatory behavior of the Sine-integral is the familiar Gibbs oscillations.

As we shall discuss in more detail in Section 5, recent results allow us to dramati-

cally improve on this situation and even completely overcome the Gibbs oscillations

to recover an exponentially accurate approximation to a piecewise analytic function,

represented by its global expansion.

2.3. The Duality between Modes and Nodes

While there is flexibility in the choice of the quadrature rules, used to compute

the discrete expansion coefficients in the modal expansions, and similar freedom

in choosing a nodal set on which to base the Lagrange interpolation polynomials,

particular choices are awarded by insight.

Consider, as an example, the modal expansion, (7), with the expansion coeffi-

cients approximated as in (10). Inserting the latter directly into the former yields

INu(x) =

N∑
n=−N

 1

2N + 1

2N∑
j=0

u(xj) exp(−inxj)

 exp(inx)

=

2N∑
j=0

u(xj)

[
1

2N + 1

N∑
n=−N

exp (in(x− xj))

]

=

2N∑
j=0

u(xj)
1

2N + 1

sin
(
1
2 (2N + 1)(x− xj)

)
sin
(
1
2 (x− xj)

) =

2N∑
j=0

u(xj)hj(x) .

Hence, provided the expansion coefficients are approximated by the trapezoidal

rule, (10), we recover the interpolation. This particular combination of grid points

and quadrature rules results in two mathematically equivalent, but computationally

very different, ways of expressing the interpolation and hence the computation of

spatial derivatives.

A similar result can be recovered for the orthogonal polynomials provided Gauss

quadrature nodes are used [8, 38].

3. SPECTRAL METHODS

Let us now turn the attention towards the solution of hyperbolic problems using

spectral methods. Prominent examples of problems include Maxwells equations

from electromagnetics, the Euler equations of gas-dynamics and the equations of



8 J.S. HESTHAVEN

elasticity. For the sake of simplicity we concentrate on methods for the scalar

conservation law

∂u

∂t
+
∂f(u)

∂x
= 0 ,

subject to appropriate boundary and initial conditions. For this initial discussion,

we focus on problems for which the solution remains smooth and return to the

non-smooth case in Section 4.

We assume that the solution is given as

u(x, t) ' uh(x, t) =

N∑
n=−N

ũn(t) exp(inx),

where ũn(t) represent the continuous or the discrete expansion coefficients. We can

now define the residual

Rh(x, t) =
∂uh
∂t

+
∂f(uh)

∂x
.

Specifying exactly how this vanishes, hence stating in which sense uh satisfies the

conservation laws, gives rise to different families of methods with subtle differences.

3.1. Galerkin methods

In the Galerkin approach, we require that the residual is orthogonal to the space

spanned by the basis functions. For the Fourier case, this results in the scheme

dûn
dt

= − 1

2π

∫ 2π

0

Rh(x, t) exp(−inx) dx.

This we can also express as

∂uh
∂t

+ PN
(
∂f(uh)

∂x

)
= 0,

subject to the initial conditions

uh(x, 0) = PNu(x, 0).

One observes that boundary conditions must be reflected in the approximation

itself, i.e., in the Galerkin method, each of the basis functions in (1) must satisfy

the boundary conditions. For periodic problems, the Fourier series automatically

enforces this. However, for non-trivial boundary conditions, this may present a

challenge albeit successful schemes have be formulated [27, 53].

The stability of Galerkin schemes is closely related to the wellposedness of the

conservation laws in the norm ‖ · ‖ [27]. The practical difficulty with the Galerkin

scheme is the need to evaluate the projection of the general flux. While this may

be possible for certain simple fluxes, e.g. linear or polynomial fluxes, it is clearly

not possible for more general cases. In such a case, one can no longer express the

scheme without the use of quadratures. However, this introduces a grid, induces

aliasing and suggests that we consider collocation methods.
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3.2. Collocation methods

To overcome the difficulties associated with exact evaluation of the inner products

in the Galerkin method, we can change the statement on the residual. Let us define

2N + 1 distinct collocation points, yj , and require that the residual vanishes in a

pointwise sense

Rh(yj , t) =

(
∂uh
∂t

+
∂f(uh)

∂x

)∣∣∣∣
yj

= 0.

This results in 2N + 1 equations for the 2N + 1 unknowns. In principle, there

are no restrictions on how yj is chosen although the stability of the scheme is, to

some extend, impacted by this [38]. If we make the most natural choice that the

interpolation points xj and the collocation points yj are the same we recover the

classic collocation scheme

IN
∂uh
∂t

+ IN
∂f(uh)

∂x
= 0,

which can also conveniently be expressed as

d

dt
u + Df = 0,

where u and f represents vectors of the solution and the flux, respectively, evaluated

at the grid points.

To understand the stability of collocation schemes for hyperbolic problems, let

us consider the linear problem

∂u

∂t
+ a(x)

∂u

∂x
= 0 , (13)

where a > 0 implies a rightward propagating wave and a < 0 corresponds to a

leftward propagating wave. The Fourier collocation approximation becomes

d

dt
u + ADu = 0 , (14)

where Aii = a(xi) is diagonal.

Define the discrete inner product and L2-equivalent norm as

[f, g]N =
2π

2N + 1

2N∑
i=0

f(xi)g(xi) , ‖f‖2N = [f, f ]N .

If we initially assume that |a(x)| > 0 [50, 43, 17, 27, 51], it is easy to see that for

v = A−1/2u, we recover

d

dt
v + A1/2DA1/2v = 0 ,

such that
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1

2

d

dt
‖vh‖2N =

1

2

d

dt
uTA−1u = 0 ,

since A1/2DA1/2 is antisymmetric.

For the general case where a(x) changes sign within the computational domain,

the situation is more complex. The straightforward way to guarantee stability is to

consider the skew-symmetric form [43, 58]

∂u

∂t
+

1

2

∂a(x)u

∂x
+

1

2
a(x)

∂u

∂x
− 1

2ax(x)u(x) = 0 , (15)

with the discrete form

∂uh
∂t

∣∣∣∣
xj

+
1

2

∂INa(x)uh
∂x

∣∣∣∣
xj

+
1

2
a(xj)

∂uh
∂x

∣∣∣∣
xj

− 1
2ax(xj)uh(xj) = 0 .

Stability follows since

1

2

d

dt
‖uh‖2N ≤ 1

2 max
x∈[0,2π]

|ax(x)| ‖uh‖2N .

The disadvantage of the skew-symmetric formulation is a doubling of the compu-

tational work.

The question of stability of the simple formulation, (14), for general a(x) re-

mained an open question for a long time, although partial results were known [28].

The difficulty in resolving this issue is associated with the development of very steep

spatial gradients which, for a fixed resolution, eventually introduce significant alias-

ing that affect the stability. By carefully examining the interplay between aliasing,

resolution, and stability, it was shown [23] that the Fourier approximation is only

algebraically stable [27], i.e.,

‖uh(t)‖N ≤ C(t)N‖uh(0)‖N , (16)

or weakly unstable. The weak aliasing driven instability spreads from the high

modes through the aliasing and results in at most an O(N) amplification of the

Fourier components of the solution. In other words, for well resolved computations

where these aliasing components are very small the computation will appear stable

for all practical purposes. Furthermore, in [24] it is shown that a weak amount

of filtering suffices to control the instability. We return to this in more detail in

Section 4.

3.3. Interlude on polynomial methods and boundary conditions

Let us now briefly consider the more general initial boundary value problem

∂u

∂t
+
∂f(u)

∂x
= 0 , (17)

u(x, 0) = g(t) ,
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posed on a finite domain which we take to be [−1, 1] without loss of generality.

For the problem to be wellposed, we must specify boundary conditions on the form

αu(−1, t) = f−(t) , βu(1, t) = f+(t) .

Specification of α and β is related to the fluxfunction, e.g., if

x
∂f

∂u
< 0 ,

at the boundary, information is incoming and a boundary condition must be given.

For a system of equations, the equivalent condition is posed through the character-

istic variables, i.e., characteristic waves entering the computational domain must

be specified and, hence, require a boundary condition to ensure wellposedness of

the problem. See [32, 38] for further details.

What separates the polynomial approximation from the trigonometric schemes

discussed so far is the need to impose boundary conditions to restrict the numerical

solutions, uh(x, t), to satisfy the boundary conditions.

3.3.1. Strongly Imposed Boundary Conditions

In the classic approach one requires that the boundary conditions are imposed

strongly, i.e., exactly. Hence, we sall seek a polynomial, uh(x, t), that satisfies (17)

in a collocation sense at all internal grid points, xj , as

∂uh
∂t

∣∣∣∣
xj

+
∂INf(uh)

∂x

∣∣∣∣
xj

= 0 ,

while the boundary conditions are imposed exactly

αuh(−1, t) = f−(t) , βuh(1, t) = f+(t) .

If we again consider the wave-equation, (13), the collocation scheme becomes

∂uh
∂t

∣∣∣∣
xj

+ a(xj)
∂uh
∂x

∣∣∣∣
xj

= 0 ,

at all interior grid points, i.e., for a > 0, j ∈ [1, N ], while uh(x0, t) = f−(t).

Establishing stability of the collocation scheme is considerably more challenging

than for the Fourier collocation method. To expose the source of this difficulty,

consider the simple wave equation, (13), with a(x) = 1 and subject to the conditions

u(x, 0) = g(x) , u(−1, t) = 0 .

A collocation scheme based on the Gauss-Lobatto nodes yields

d

dt
u = −D̃u . (18)

Here the matrix D̃ represents the polynomial differentiation matrix [27, 18, 38]

modified to enforce the boundary condition strongly, i.e., by introducing zeros in

the first row and column.
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The strongly enforced boundary condition introduces the first main obstacle as

any structure of the differentiation matrix is destroyed. This leaves us with the

quadrature formula to establish stability. The straightforward quadrature formula,

however, is closely related to the weighted inner product, (f, g)L2
w

, in which the

polynomials are orthogonal. With the exception of the Legendre polynomials, the

norm associated with the inner product is not uniformly equivalent to the usual

L2-norm [27, 38]. This loss of equivalence eliminates the straightforward use of

the quadrature rules to establish stability as the corresponding norm is too weak.

Thus, the two central techniques utilized for the Fourier methods are not directly

applicable to the case of the polynomial collocation methods.

One approach is to construct a new inner product and associated norm, uniformly

equivalent to L2, and subsequently establish stability in this norm. This is the

approach taken in [28, 26]. The more general variable coefficient problem, (13),

with a(x) being smooth can be addressed using a similar approach. In particular,

if a(x) is smooth and uniformly bounded away from zero stability is established in

the elliptic norm [28]

1

2

d

dt

N−1∑
j=0

v2N (xj)
w̃j
a(xj)

≤ 0 .

For the more general case of a(x) changing sign the only known results are based on

the skew-symmetric form [7, 38], (15), although numerical experiments suggest that

the straightforward Chebyshev collocation approximation of the wave equation with

a variable coefficient behaves much as the Fourier approximation discussed above,

i.e., if the solution is well resolved, the approximation is stable [27, 28].

3.3.2. Weakly Imposed Boundary Conditions

The conceptual leap that leads one to consider other ways of imposing boundary

conditions is the observation that it suffices to impose the boundary conditions to

the order of the scheme, i.e., weakly.

This simple idea, put forward in the context of spectral methods in [7] in a weak

formulation and in [19, 20] for the strong formulation considered here, has recently

been developed further into a flexible technique to impose boundary conditions in

pseudospectral approximations to a variety of problems [13, 37, 9, 36, 33, 34, 35].

In this setting, one seeks a polynomial solution, uh(x, t), to (17) that satisfy

∂uh
∂t

+ IN
∂INf(uh)

∂x
= −τ−αQ−(x)

[
uh(−1, t)− f̃−(t)

]
(19)

−τ+βQ+(x)
[
uh(1, t)− f̃+(t)

]
,

where we have introduced the polynomials, Q±(x), and the scalars, τ±.

To complete the scheme we must specify Q±(x) and define an approach by which

to specify the scalar parameters, τ±. While the latter choice is dictated by requiring

semi-discrete stability, the former choice of Q±(x) is associated with a great deal

of freedom.

As an example, consider the approximation to the constant coefficient wave equa-

tion (13)
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∂uh
∂t

+ a
∂uh
∂x

= −τ−aQ−(x) [uh(−1, t)− f(t)] ,

where uh(x, t) is based on the Legendre-Gauss-Lobatto points. A viable choice of

Q−(x) is

Q−(x) =
(1− x)P ′N (x)

2P ′N (−1)
=

{
1 x = −1

0 x = xj 6= −1
,

where xj refers to the Legendre-Gauss-Lobatto points and PN (x) is the Legendre

polynomial of order N . By requesting that the equation be satisfied in a collocation

sense and the scheme be stable, we recover the scheme

∂uh
∂t

∣∣∣∣
xj

+ a
∂uh
∂x

∣∣∣∣
xj

= −aN(N + 1)

4

(1− xj)P ′N (xj)

2P ′N (−1)
[uh(−1, t)− f(t)] .

Using the accuracy of the quadrature, one easily shows asymptotic stability. Al-

though the boundary condition is imposed only weakly, the approximation is clearly

consistent, i.e., if uh(x, t) = u(x, t) the penalty term vanishes identically. A key dif-

ference between the schemes with strongly and weakly imposed boundary conditions

is that in the former case, stability is established after construction of the scheme

whereas in the latter case, stability is guaranteed as a result of the construction of

the scheme.

4. STABILITY AND CONVERGENCE OF NONLINEAR

PROBLEMS

Turning to the development of spectral methods for nonlinear problems intro-

duces a number of challenges. First of all, the use of standard energy methods to

establish stability is no longer possible except in certain special cases. As a result of

this, the question of convergence remains open and must be addressed in a different

way.

4.1. Skew-symmetric form

If we consider the Fourier collocation scheme for Burgers equation

∂u

∂t
+

1

2

∂u2

∂x
= 0 ,

we seeking the approximate solution, uh(x, t), such that

∂uh
∂t

∣∣∣∣
xj

+
1

2

∂

∂x
INu2h

∣∣∣∣
xj

= 0 . (20)

Note that while the partial differential equation has the equivalent formulation

∂u

∂t
+ u

∂u

∂x
= 0 ,
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for smooth solutions, the corresponding non-conservative Fourier approximation

∂uh
∂t

∣∣∣∣
xj

+ uh(xj)
∂uh
∂x

∣∣∣∣
xj

= 0 ,

is not equivalent to (20) and may behave differently due to the aliasing.

We cannot establish stability of these scheme using standard means. However,

by writing it on skew-symmetric form

∂u

∂t
+

1

3

∂u2

∂x
+

1

3
u
∂u

∂x
= 0 ,

stability of the collocation approximation

∂uh
∂t

∣∣∣∣
xj

+
1

3

∂

∂x
INu2h

∣∣∣∣
xj

+
1

3
uh(xj)

∂uh
∂x

∣∣∣∣
xj

= 0 ,

follows directly from the accuracy of the quadrature.

If we consider a general hyperbolic conservation law

∂u

∂t
+
∂f(u)

∂x
= 0,

one can prove under light conditions on f(u) that it may always be expressed on

skew-symmetric form. This extends to many systems. In [56] it is shown that the

existence of a skew-symmetric form is guaranteed for any system that has a convex

entropy or is symmetrizable. This includes all major systems of conservation laws,

e.g., the Euler equations.

This results suggests that one could simply express the conservation law on skew-

symmetric form to ensure stability of the scheme. For problems with smooth so-

lutions, this is indeed a powerful technique, although it doubles the computational

cost. However, if we recall that for the scalar problem, the quadratic functional u2

plays the role of both energy and entropy, we realize that the skew-symmetric form

conserves entropy. For problems with shocks this is in violation of basic properties

of the hyperbolic conservation laws. Hence, the skew-symmetric form is suitable

only for problems with smooth solutions or in combination with additional dissipa-

tion.

4.2. Filtering for stability

Maintaining stability of the numerical approximation becomes increasingly hard

as the discontinuity evolves and generates energy with higher and higher frequency

content. This process, amplified by the nonlinear mixing of the Gibbs oscillations

and the numerical solution, eventually renders the scheme unstable or, if the scheme

is expressed on skew-symmetric form, the solution wildly inaccurate.

Understanding the source of the stability problem, i.e., accumulation of high

frequency energy, suggests a possible solution is the introduction of a dissipative

mechanism to remove the high frequency components.

A classical way to accomplish this is to modify the original problem by adding

artificial dissipation as

∂u

∂t
+
∂f(u)

∂x
= ε(−1)p+1 ∂

2pu

∂x2p
.
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A direct implementation of this, however, may be costly and introduces additional

stiffness which limits the stable time step [24, 38].

To seek a different path, let us modify the numerical solution, uh(x, t), by the

use of a spectral filter as

FNuh(x, t) =

N∑
n=−N

σ
( n
N

)
ũn(t) exp(inx) . (21)

To understand the impact of using the filter at regular intervals as a stabilizing

mechanism, a procedure first proposed in [49, 44], consider an exponential filter

σ(η) = exp
(
−αη2p

)
.

As discussed in Sec. 5.1 this filter allows for a dramatic improvement in the accuracy

of the approximation away from points of discontinuity.

To appreciate its impact on stability, consider the generic initial value problem

∂u

∂t
= Lu ,

and the Fourier scheme

d

dt
u = LNu .

Advancing the solution from t = 0 to t = ∆t, followed by filtering, is expressed as

u(∆t) = FN exp(LN∆t)u(0) .

If we first assume that LN represents the constant coefficient hyperbolic problem,

i.e., L = a ∂
∂x , we recover that

ũn(∆t) = exp(−αη2p + a(ik)∆t)ũn(0) , (22)

i.e., we are in fact computing the solution to the modified problem

∂u

∂t
= a

∂u

∂x
− α (−1)p

∆tN2p

∂2pu

∂x2p
.

The effect of the filter is thus equivalent to that of adding a small dissipative term

to the original equation. However, the process of adding the dissipation through

the filter is very simple.

For a general L, e.g., with a variable coefficient or a nonlinear flux in which case

FN and LN no longer commute, the modified equation being solved takes the form

∂u

∂t
= Lu− α (−1)p

∆tN2p

∂2pu

∂x2p
+O(∆t2) ,

by viewing the application of the filter as an operator splitting problem [4, 14].
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It is clear that the filter has a stabilizing effect, established more rigorously for

problem with smooth and nonsmooth initial data in [49, 44, 23] for the Fourier

approximation to the general variable coefficient problem, (13). In [24, 38] it is

furthermore established that light filtering suffices to stability an aliasing driven

instability.

4.3. Vanishing viscosity techniques

The foundation of a convergence theory for the spectral approximations to hy-

perbolic conservation laws has been laid in [59, 48, 10] for the periodic case and

extended in [47] to the Legendre approximation and to the Chebyshev-Legendre

scheme in [46, 45].

To outline the basic elements of this convergence theory let us restrict ourselves

to the periodic case. For the discrete approximation we must add a dissipative term

that is strong enough to stabilize the approximation, yet small enough so as to not

ruin the spectral accuracy of the scheme. In [59, 48] the following spectral viscosity

method was considered

∂uh
∂t

+
∂

∂x
PN (f(uh)) = εh(−1)p+1 ∂

p

∂xp

[
Qm(x, t) ∗ ∂

puh
∂xp

]
, (23)

where

∂p

∂xp

[
Qm(x, t) ∗ ∂

puh
∂xp

]
=

∑
m<|n|≤N

(ik)2pQ̂nûn exp(inx) .

To ensure stability m should not be taken too big. On the other hand, taking m

too small will impact the accuracy in a negative way. An acceptable compromise is

m ∼ Nθ , θ <
2p− 1

2p
.

Moreover, the smoothing factors, Q̂n, should only be activated for high modes as

Q̂n = 1−
(
m

|n|

) 2p−1
θ

,

for |n| > m and Q̂n = 1 otherwise. Finally, we assume that the amplitude of the

viscosity is small as

εh ∼
C

N2p−1 .

Under these assumptions, one can prove for p = 1 that the solution is bounded in

L∞[0, 2π] and obtain the estimate [59]

‖uh‖L2[0,2π] +
√
εh

∥∥∥∥∂uh∂x
∥∥∥∥
L2
loc

≤ C .

Convergence to the correct entropy solution then follows from compensated com-

pactness arguments [59, 48].
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To realize the connection between the spectral viscosity method and the use of

filters discussed above, consider the simple case where f(u) = au. In this case, the

solution to (23) is

ûn(t) = exp
(
inat− εhn2Q̂n

)
ûn(0) , |n| > m ,

which is equivalent to the effect of the filtering, albeit with a particular filter func-

tion.

For p 6= 1 a bound on the L∞[0, 2π] is no longer known. However, experience

suggests that it is better to filter from the first mode but to employ a slower

decay of the expansion coefficients, corresponding to taking p > 1. This yields the

superviscosity [60] method in which one solves

∂uh
∂t

+
∂

∂x
PNf(uh) = εh(−1)p+1 ∂

2puh
∂x2p

,

which is equivalent to the use of a high-order exponential filter.

5. POST PROCESSING TECHNIQUES

A manifestation of the slow and nonuniform convergence of INu for a piecewise

smooth functions is the linear decay of the global expansion coefficients, ũn. This

observation also suggests that one could attempt to modify the global expansion

coefficients to enhance the convergence rate of the spectral approximation. The

key question to consider is exactly how one should modify the expansion to ensure

enhanced convergence to the correct solution.

However, before doing so, it is worth understanding if the emergence of a shock

and the Gibbs phenomenon effectively eliminates any hope of maintaining high-

order accuracy.

Consider again

∂u

∂t
+ a(x)

∂u

∂x
=
∂u

∂t
+ Lu = 0.

Both a(x) and u(x, t) are considered periodic and a(x) is smooth. We have already

established stability of this scheme, possibly by using filtering or through the skew-

symmetric form.

We assume that the initial condition, u(x, 0), is non-smooth, resulting in the

introduction of the Gibbs phenomenon.

Let us also introduce the adjoint problem

∂v

∂t
− L∗v = 0,

where (Lu, v) = (u,L∗v). We assume smooth initial conditions for the adjoint

problem. A seminal result [1] can be obtained as

(uh(t), v(t)) = (u(t), v(t)) + ε, (24)

where ε is very small and depends only on the smoothness of v(x, t). Since the

adjoint problem is smooth, this can be made arbitrarily small. This highlights, at
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least for the case of a variable coefficient problem with nonsmooth initial conditions,

the possibility of recovering a high-order accurate solution, uh(t). However, this

accuracy is not found directly in the solution uh(x, t), but, rather, in the moments

of the solution.

While it is a surprising result, it is also an encouraging result. It clarifies that the

Gibbs oscillations may look bad, but they do not destroy the attractive basic prop-

erties of the schemes – in particular, the properties related to the highly accurate

propagation. This result can be extended to non-smooth solutions and sources [65]

and suggests that we consider ways to recover a pointwise spectrally accurate solu-

tion from the oscillatory solution which is only pointwise first order accurate. For

Burgers equation, extensive computational results in [54] suggest that high-order

accuracy is also retained in this case.

5.1. Filtering for accuracy

We consider the filtered approximation, FNuh(x), of the form

FNuh(x) =

N∑
n=−N

σ
( n
N

)
ũn exp(inx) , (25)

where σ(η) is a real filter function with the following properties [64]

σ(η) =


σ(−η)

σ(0) = 1

σ(q)(0) = 0 1 ≤ q ≤ 2p− 1

σ(η) = 0 |η| ≥ 1

. (26)

If σ(η) has at least 2p−1 continuous derivatives, σ(η) is termed a filter of order 2p.

As the filter is nothing more than a lowpass filter, it is not surprising that the

filtered function converges faster than the unfiltered filtered original expansion. To

understand exactly how much the filter modifies the convergence rate, assume that

u(x) is piecewise C2p with one discontinuity located at x = ξ. Let us furthermore

assume that the filter is of order 2p. Then the pointwise error of the filtered

approximation is given as [64, 29, 38]

|u(x)−FNuN (x)| ≤ C 1

N2p−1d(x, ξ)2p−1
K(u) + C

√
N

N2p
‖u(2p)‖L2

B
,

where d(x, ξ) measures the distance from x to the point of discontinuity, ξ, K(u) is

uniformly bounded away from the discontinuity and a function of u(x) only. Also

‖ · ‖L2
B

signifies the broken L2-norm.

While the details of the proof of this result are technical and can be found in [64,

29, 38], the interpretation of the result is simple, and perhaps somewhat surprising.

It states that the convergence rate of the filtered approximation is determined

solely by the order 2p of the filter σ(η) and the regularity of the function, u(x),

away from the point of discontinuity. In particular, if the function u(x) is piecewise

analytic and the order of the filter increases with N , one recovers an exponentially
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accurate approximation to the unfiltered function everywhere except very close to

the discontinuity [64, 29]. Partial results for polynomial expansions suggest similar

behavior [40].

Spectral filtering of the expansion coefficients remains the most popular way of

enhancing the convergence rate. An alternative is to improve the approximation by

localizing the approximation close to the point of the discontinuity. This approach,

known as physical space filtering, operates directly on the interpolating polynomials

rather than the expansion coefficients. This is developed and applied with success

in [31, 29, 61, 62].

An alternative approach explores the superior properties of Padé-approximation

to address the Gibbs phenomenon by a reprojection. This approach, developed

in [15, 16, 41, 39], often yields excellent results, even at the point of discontinu-

ity. However, the nonlinear nature of the Padé approximant makes its application

complex.

5.2. Gegenbauer reconstruction

Let us finally outline the key elements of a general theory that establishes the

possibility of recovering a piecewise exponentially convergent approximation to a

piecewise analytic function, having knowledge of the global expansion coefficients

and the position of the discontinuities only.

The basic element of this approach is the identification of a new basis with very

special properties and, subsequently, the expansion of the slowly convergent trun-

cated global expansion in this new basis. Provided this new basis satisfies certain

conditions, the new expansion has the remarkable property that it is exponentially

convergent to the original piecewise analytic function even though its evaluation

uses information from the slowly convergent global expansion.

We assume that there exists an interval [a, b] ⊂ [0, 2π] in which u(x) is analytic

and, furthermore, that the original truncated expansion is pointwise convergent in

all of [0, 2π] with the exception of a finite number of points. We introduce the

scaled variable

ξ(x) = −1 + 2
x− a
b− a

.

Clearly, ξ : [a, b]→ [−1, 1].

Now define a new basis, ψλn(ξ), which is orthogonal in the weighted inner product,

(·, ·)λw where λ signifies that the weight, w(x), may depend on λ, i.e.,

(
ψλk , ψ

λ
n

)λ
w

= ‖ψλn‖2L2
w
δkn = γλnδkn .

Furthermore, we require that if v(ξ) is analytic then

Pλv(ξ) =

λ∑
n=0

1

γλn

(
v, ψλn

)λ
w
ψλn(ξ) ,

is pointwise exponentially convergent as λ increases, i.e.,

‖v − Pλv‖L∞ ≤ Ce−cλ ,



20 J.S. HESTHAVEN

with c > 0. This is simply the statement of exponential convergence for a polyno-

mial expansion of a analytic function.

A final condition sets this basis apart and is central in order to overcome the

Gibbs phenomenon. We require that there exists a number β < 1, such that for

λ = βN we have

∣∣∣∣ 1

γλn

(
φk(x(ξ)), ψλn(ξ)

)λ
w

∣∣∣∣ ‖ψλn‖L∞ ≤ (αNk
)λ

, (27)

for k > N , n ≤ λ and α < 1. The interpretation of this condition is that the

projection of the high modes of φk onto the basis, ψλn, is exponentially small in the

interval, ξ ∈ [−1, 1]. In other words, by reexpanding the slowly decaying φn-based

global expansion in the local ψλn-basis, an exponentially accurate local approxima-

tion is recovered. Moreover, this can be achieved everywhere in the domain where

u(x) is analytic. This latter condition on ψλn is termed the Gibbs condition to

emphasize its close connection to the resolution of the Gibbs phenomenon [29, 30].

Provided only that the ψλn-basis, termed the Gibbs complementary basis, is com-

plete we recover the key result∥∥∥∥∥u(x)−
λ∑
n=0

1

γλn

(
PNu, ψλn

)λ
w
ψλn(ξ(x))

∥∥∥∥∥
L∞

≤ C exp(−cN) ,

where λ = βN and u(x) is analytic in the interval [a, b].

In other words, if a Gibbs complementary basis exists it is possible to recon-

struct a piecewise exponentially convergent approximation to a piecewise analytic

function from the information contained in the original slowly converging global

approximation. The only additional piece of information needed is the location of

the points of discontinuity. The Gibbs phenomenon can be overcome.

A constructive approach to the identification of the complementary basis is cur-

rently unknown. The existence of such a basis, however, has been established by

carefully examining the properties of the basis

ψλn(ξ) = C(λ)
n (ξ) ,

where Cλn(ξ) represent the Gegenbauer polynomials, also known as the symmetric

Jacobi polynomials or the ultraspherical polynomials [55].

Using the Fourier basis, it must be established that∣∣∣∣ 1

γλn

(
φk, ψ

λ
n

)λ
w

∣∣∣∣ ≤ (αNk
)λ

,

for k > N , 0 < α < 1, and n ≤ βN = λ. However, for this basis the inner product

allows an exact evaluation

1

γλn

(
φk, ψ

λ
n

)
= inΓ(λ)

(
2

πkε

)λ
(n+ λ)Jn+λ(πεk) ,

with Jν(x) being the Bessel function and ε = b − a measures the width of the

interval. Using the properties of the Bessel function and the Stirling formula for

the asymptotic of the Γ-function, the Gibbs condition is satisfied if [29]
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β =
2πε

27
.

This establishes the existence of a Gibbs complementary basis to the Fourier basis

[29, 30].

The extension to the polynomial case follows a similar approach and the Gegen-

bauer polynomials again play the role as the complementary basis[29, 30].

The reconstruction of piecewise smooth solutions to conservation laws as a post

processing technique has been exploited in [12, 14, 21, 22].
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