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Abstract

In this work we consider (hierarchical, Lagrange) reduced basis approx-
imation and a posteriori error estimation for elasticity problems in affinley
parametrized geometries. The essential ingredients of the methodology
are: a Galerkin projection onto a low-dimensional space associated with
a smooth “parametric manifold” — dimension reduction; an efficient and
effective greedy sampling methods for identification of optimal and numer-
ically stable approximations — rapid convergence; an a posteriori error
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estimation procedures — rigorous and sharp bounds for the functional out-
puts related with the underlying solution or related quantities of interest,
like stress intensity factor; and Offline-Online computational decomposition
strategies — minimum marginal cost for high performance in the real-time
and many-query (e.g., design and optimization) contexts. We present several
illustrative results for linear elasticity problem in parametrized geometries
representing 2D Cartesian or 3D axisymmetric configurations like an arc-
cantilever beam, a center crack problem, a composite unit cell or a woven
composite beam, amulti-material plate, and a closed vessel. We consider dif-
ferent parametrization for the systems: either physical quantities –to model
the materials and loads– and geometrical parameters –to model different geo-
metrical configurations– with isotropic and orthotropic materials working in
plane stress and plane strain approximation. We would like to underline the
versatility of the methodology in very different problems. As last example
we provide a nonlinear setting with increased complexity.

1 Introduction
In several fields, from continuum mechanics to fluid dynamics, we need to solve
numerically very complex problems that arise from physics laws. Usually we
model these phenomena through partial differential equations (PDEs) and we are
interested in finding the field solution and also some other quantities that increase
our knowledge on the system we are describing. Almost always we are not able
to obtain an analytical solution, so we rely on some discretization techniques, like
Finite Element (FE) or Finite Volume (FV), that furnish an approximation of the
solution. We refer to this methods as the “truth” ones, because they require very
high computational costs, especially in parametrized context. In fact if the problem
depends on some physical or geometrical parameter, the full-order or high-fidelity
model has to be solved many times and this might be quite demanding. Examples
of typical applications of relevance are optimization, control, design, bifurcation
detection and real time query. For this class of problems, we aim to replace the
high-fidelity problem by one of much lower numerical complexity, through the
model order reduction approach [11]. We focus on Reduced Basis (RB) method
[17, 34, 33, 4, 2] which provides both fast and reliable evaluation of an input
(parameter)-output relationship. The main features of this methodology are (i)
those related to the classic Galerkin projection on which RB method is built upon
(ii) an a posteriori error estimation which provides sharp and rigorous bounds and
(iii) offline/online computational strategy which allows rapid computation. The
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goal of this chapter is to present a very efficient a posteriori error estimation for
linear elasticity parametrized problem. We showmany different configurations and
settings, by applying RB method to approximate problems using plane stress and
plane strain formulation and to deal both with isotropic and orthotropic materials.
We underline that the setting for very different problems is the same and unique.

This work is organized as follows. In Section 2, we first present a “unified”
linear elasticity formulation; we then briefly introduce the geometric mapping
strategy based on domain decomposition; we end the Section with the affine de-
composition forms and the definition of the “truth” approximation, which we shall
build our RB approximation upon. In Section 3, we present the RB methodology
and the offline-online computational strategy for the RB “compliant” output. In
Section 4, we define our a posteriori error estimators for our RB approach, and
provide the computation procedures for the two ingredients of our error estimators,
which are the dual norm of the residual and the coercivity lower bound. In Section
5, we briefly discuss the extension of our RB methodology to the “non-compliant”
output. In Section 6, we show several numerical results to illustrate the capability
of this method, with a final subsection devoted to provide an introduction to more
complex nonlinear problems. Finally, in Section 7, we draw discussions and news
on future works.

2 Preliminaries
In this Section we shall first present a “unified” formulation for all the linear
elasticity cases – for isotropic and orthotropic materials, 2D Cartesian and 3D
axisymmetric configurations – we consider in this study. We then introduce a
domain decomposition and geometric mapping strategy to recast the formulation
in the “affine forms”, which is a crucial requirement for our RB approximation.
Finally, we define the “truth” finite element approximation, upon which we shall
build the RB approximation, introduced in the next Section.

2.1 Formulation on the “Original” Domain
2.1.1 Isotropic/Orthotropic materials

We first briefly describe our problem formulation based on the original settings
(denoted by a superscript o). We consider a solid body in two dimensions Ωo(µ) ∈
R2 with boundary Γo, where µ ∈ D ⊂ RP is the input parameter and D is the
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parameter domain [38, 39]. For the sake of simplicity, in this section, we assume
implicitly that any “original” quantities (stress, strain, domains, boundaries, etc)
with superscript o will depend on the input parameter µ, e.g. Ωo ≡Ωo(µ).

We first make the following assumptions: (i) the solid is free of body forces,
(ii) there are negligible thermal strains; note that the extension to include either
or both body forces/thermal strains is straightforward. Let us denote uo as the
displacement field, and the spatial coordinate xo = (xo

1, x
o
2), the linear elasticity

equilibrium reads
∂σo

i j

∂xo
j
= 0, in Ωo (1)

where σo denotes the stresses, which are related to the strains εo by

σo
i j = Ci j klε

o
kl, 1 ≤ i, j, k, l ≤ 2

where
εo

kl =
1
2

(
∂uo

k

∂xo
l
+
∂uo

l

∂xo
k

)
,

uo = (uo
1,u

o
2) is the displacement and Ci j kl is the elastic tensor, which can be

expressed in a matrix form as

[C] =


C1111 C1112 C1121 C1122
C1211 C1212 C1221 C1222
C2111 C2112 C2121 C2122
C2211 C2212 C2221 C2222

 = [B]
T [E][B],

where

[B] =


1 0 0 0
0 0 0 1
0 1 1 0

 [E] =


c11 c12 0
c21 c21 0
0 0 c33

 .
The matrix [E] varies for different material types and is given in the Appendix.

We next consider Dirichlet boundary conditions for both components of uo:

uo
i = 0 on Γ

o
D,i,

and Neumann boundary conditions:

σo
i je

o
n, j =

{
f o
n eo

n,i on Γo
N

0 on Γo\Γo
N
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where f o
n is the specified stress on boundary edge Γo

N respectively; and eo
n =

[eo
n,1, e

o
n,2] is the unit normal on Γo

N . Zero value of f o
n indicate free stress (ho-

mogeneous Neumann conditions) on a specific boundary. Here we only consider
homogeneous Dirichlet boundary conditions, but extensions to non-homogeneous
Dirichlet boundary conditions and/or nonzero traction Neumann boundary condi-
tions are simple and straightforward.

We then introduce the functional space

Xo = {v = (v1,v2) ∈ (H1(Ωo))2 | vi = 0 on Γo
D,i, i = 1,2},

here H1(Ωo) = {v ∈ L2(Ωo) | ∇v ∈ (L2(Ωo))2} and L2(Ωo) is the space of square-
integrable functions over Ωo. By multiplying (1) by a test function v ∈ Xo and
integrating by part over Ωo we obtain the weak form∫

Ωo

∂vi

∂xo
j
Ci j kl

∂uo
k

∂xo
l

dΩo =

∫
Γo
N

f o
n eo

n, jv j dΓo. (2)

Finally, we define our output of interest, which usually is ameasurement (of our
displacement field or even equivalent derived solutions such as stresses, strains)
over a boundary segment Γo

L or a part of the domain Ωo
L . Here we just consider a

simple case,
so(µ) =

∫
Γo
L

f o
`,iu

o
i dΓo, (3)

i.e the measure of the displacement on either or both xo
1 and xo

2 direction along
Γo

L with multipliers f o
`,i; more general forms for the output of interest can be

extended straightforward. Note that our output of interest is a linear function of
the displacement; extension to quadratic function outputs can be found in [21].

We can then now recover our abstract statement: Given a µ ∈D, we evaluate

so(µ) = `o(uo;µ),

where uo ∈ Xo satisfies

ao(uo,v;µ) = f o(v;µ), ∀v ∈ Xo.

Here ao(w,v;µ) : Xo× Xo→ R, ∀w,v ∈ Xo is the symmetric and positive bilinear
form associated to the left hand side term of (2); f o(v;µ) : Xo→ R and `o(v;µ) :
Xo→R, ∀v ∈ Xo are the linear forms associated to the right hand side terms of (2)
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and (3), respectively. It shall be proven convenience to recast ao(·, ·;µ), f o(·;µ)
and `o(·;µ) in the following forms

ao(w,v;µ) =
∫
Ωo

[
∂w1
∂xo

1
,
∂w1
∂xo

2
,
∂w2
∂xo

1
,
∂w2
∂xo

2
,w1

]
[Sa]



∂v1
∂xo

1
∂v1
∂xo

2
∂v2
∂xo

1
∂v2
∂xo

2
v1


dΩo, ∀w,v ∈ Xo, (4)

f o(v;µ) =
∫
Γo
N

[S f ]
[
v1
v2

]
dΓo, ∀v ∈ Xo, (5)

`o(v;µ) =
∫
Γo
L

[S`]
[
v1
v2

]
dΓo, ∀v ∈ Xo, (6)

where [Sa] ∈ R5×5; [S f ] ∈ R2 and [S`] ∈ R2 are defined as

[Sa] =
[
[C] [0]4×1

[0]1×4 0

]
, [S f ] =

[
f o
n eo

n,1 f o
n eo

n,2
]
, [S`] =

[
f o
`,1 f o

`,2
]
.

2.1.2 Axisymmetric

Now we shall present the problem formulation for the axisymmetric case. In a
cylindrical coordinate system (r, z, θ),1 the elasticity equilibrium reads

∂σo
rr

∂r
+
∂σo

zr

∂z
+
σo

rr −σo
θθ

r
= 0, in Ω

o

∂σo
rz

∂r
+
∂σo

zz

∂z
+
σo

rz

r
= 0, in Ω

o

1For the sake of simple illustration, we omit the “original” superscript o on (r, z, θ).
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where σo
rr , σo

zz, σo
rz, σo

θθ are the stress components given by


σo

rr
σo

zz
σo
θθ
σo

rz

 =
E

(1+ ν)(1−2ν)


(1− ν) ν ν 0
ν (1− ν) ν 0
ν ν (1− ν) 0

0 0 0
1−2ν

2

︸                                                               ︷︷                                                               ︸
[E]


εo

rr
εo

zz
εo
θθ
εo

rz

 ,

where E and ν are the axial Young’s modulus and Poisson ratio, respectively.
We only consider isotropic material, however, extension to general to anisotropic
material is possible; as well as axisymmetric plane stress and plane strain [44].
The strain εo

rr , εo
zz, εo

rz, εo
θθ are given by


εo

rr
εo

zz
εo
θθ
εo

rz

 =


∂uo
r

∂r
∂uo

z

∂z
uo

r

r
∂uo

r

∂z
+
∂uo

z

∂r


, (7)

where uo
r , uo

z are the radial displacement and axial displacement, respectively.

Assuming that the axial axis is xo
2 , let [u

o
1,u

o
2] ≡ [

uo
r

r
,uo

z ] and denoting
[xo

1, x
o
2, x

o
3] ≡ [r, z, θ], we can then express (7) as


εo

11
εo

22
εo

33
εo

12

 = [Ê]


xo
1 0 0 0 1

0 0 0 1 0
0 0 0 0 1
0 xo

1 1 0 0

︸                     ︷︷                     ︸
[Ba]



∂uo
1

∂xo
1

∂uo
1

∂xo
2

∂uo
2

∂xo
1

∂uo
2

∂xo
2

uo
1


.

As in the previous case, we consider the usual homogeneousDirichlet boundary
conditions on Γo

D,i and Neumann boundary conditions on Γo. Then if we consider
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the output of interest so(µ) defined upon Γo
L , we arrive at the same abstract statement

where

[Sa] = xo
1[Ba]T [E][Ba], [S f ] =

[
(xo

1)
2 f o

n eo
n,1, xo

1 f o
n eo

n,2

]
, [S`] =

[
xo

1 f o
n eo

n,1, f o
n eo

n,2

]
.

Note that the xo
1 multipliers appear in [S f ] during the weak form derivation,

while in [S`], in order to retrieve the measurement for the axial displacement uo
r

rather than uo
1 due to the change of variables. Also, the 2π multipliers in both

ao(·, ·;µ) and f o(·;µ) are disappeared in the weak form during the derivation, and
can be included in `o(·;µ), i.e. incorporated to [S`] if measurement is required to
be done in thruth (rather than in the axisymmetric) domain.

2.2 Formulation on Reference Domain
The RB requires that the computational domain must be parameter-independent;
however, our “original” domain Ωo(µ) is obviously parameter-dependent. Hence,
to transform Ωo(µ) into the computational domain, or “reference” (parameter-
independent) domain Ω, we must perform geometric transformations in order
to express the bilinear and linear forms in our abstract statement in appropriate
“affine forms”. This “affine forms” formulation allows us to model all possible
configurations, corresponding to every µ ∈D, based on a single reference-domain
[34, 36].

2.2.1 Geometry Mappings

We first assume that, for all µ ∈D, Ωo(µ) is expressed as

Ω
o(µ) =

Lreg⋃
s=1
Ω

o
s (µ),

where the Ωo
s (µ), s = 1, . . ., Lreg are mutually non-overlapping subdomains. In

two dimensions, Ωo
s (µ), s = 1, . . ., Lreg is a set of triangles (or in the general

case, a set of “curvy triangles”2 [20].) such that all important domains/edges
(those defining different material regions, boundaries, pressures/tractions loaded
boundary segments, or boundaries which the output of interests are calculated
upon) are included in the set. In practice, such a set is generated by a constrained
Delaunay triangulation.

2In fact, a “curvy triangle” [36] is served as the building block. For its implementation see
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We next assume that there exists a reference domain Ω ≡ Ωo(µref) =
⋃Lreg

s=1Ωs
where, for any xo ∈ Ωs, s = 1, . . ., Lreg, its image xo ∈ Ωo

s (µ) is given by

xo(µ) = T aff
s (µ;x) = [Raff

s (µ)]x+ [Gaff
s (µ)], (8)

where [Raff
s (µ)] ∈ R2×2 and [Gaff

s (µ)] ∈ R2. It thus follows from our definitions
that Ts(µ;x) : Ωs→ Ωo

s , 1 ≤ s ≤ Lreg is an (invertible) affine mapping from Ωs to
Ωo

s (µ), hence the Jacobian |det([Raff
s (µ)])| is strictly positive, and that the derivative

transformation matrix, [Daff
s (µ)] = [Raff

s (µ)]−1 is well defined. We thus can write

∂

∂xo
i
=
∂x j

∂xo
i

∂

∂x j
= Daff

s,i j(µ)
∂

∂x j
, 1 ≤ i, j ≤ 2. (9)

As in two dimensions, an affine transformationmaps a triangle to a triangle, we can
readily calculate [Raff

s (µ)] and [Gaff
s (µ)] for each subdomains s by simply solving

a systems of six equations forming from (8) by matching parametrized coordinates
to reference coordinates for the three triangle vertices.

We further require a mapping continuity condition: for all µ ∈ D,

Ts(µ;x) = Ts′(µ;x), ∀x ∈ Ωs ∩Ωs′, 1 ≤ s, s′ ≤ Lreg.

This condition is automatically held if there is no curved edge in the set ofΩo
s (µ). If

a domain contains one or more “important” curved edge, special “curvy triangles”
must be generated appropriately to honour the continuity condition. We refer the
readers to [36] for the full discussion and detail algorithm for such cases.

The global transformation is for x ∈ Ω, the image xo ∈ Ωo(µ) is given by

xo(µ) = T(µ;x).

It thus follows that T(µ;x) :Ω→Ωo(µ) is a piecewise-affine geometric mapping.

2.2.2 Affine Forms

We now define our functional space X as

X = {v = (v1,v2) ∈ (H1(Ω))2 |vi = 0 on ΓD,i, i = 1,2},

9



and recast our bilinear form ao(w,v;µ), by invoking (4), (8) and (9) to obtain
∀w,v ∈ X(Ω)

a(w,v;µ) =
∫

⋃Lreg
s=1 Ωs

[
∂w1
∂x1

,
∂w1
∂x2

,
∂w2
∂x1

,
∂w2
∂x2

,w1

]
[Sa,aff

s (µ)]



∂v1
∂x1
∂v1
∂x2
∂v2
∂x1
∂v2
∂x2
v1


dΩ.

where [Sa,aff
s (µ)] = [Hs(µ)][Sa

s ][Hs(µ)]T |det([Raff
s (µ)])| is the effective elastic ten-

sor matrix, in which

[Hs(µ)] =
©­«
[Ds(µ)] [0]2×2 0
[0]2×2 [Ds(µ)] 0

0 0 1

ª®¬ .
Similarly, the linear form f o(v;µ), ∀v ∈ X can be transformed as

f (v;µ) =
∫

⋃Lreg
s=1 ΓNs

[S f ,aff
s ]

[
v1
v2

]
dΓ,

where ΓNs denotes the partial boundary segment of ΓN of the subdomain Ωs and
[S f ,aff

s ] = ‖([Rs(µ)]en)‖2[S f ] is the effective load vector, where en is the normal
vector to ΓNs and ‖ · ‖2 denotes the usual Euclidean norm. The linear form `(v;µ)
is also transformed in the same manner.

We then replace all “original” xo
1 and xo

2 in the effective elastic tensor ma-
trix [Sa,aff

s (µ)], effective load/output vectors [S f ,aff
s (µ)] and [S`,aff

s (µ)] by (8) to
obtain a xo-free effective elastic tensor matrix and effective load/output vectors,
respectively.3 in certain conditions) can be a polynomial function of the spatial
coordinates xo as well, and we still be able to obtain our affine forms (12).

We next expand the bilinear form a(w,v;µ) by treating each entry of the

3Here we note that, the Young’s modulus E in the isotropic and axisymmetric cases (or E1, E2
and E3 in the orthotropic case only
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effective elastic tensor matrix for each subdomain separately, namely

a(w,v;µ) = Sa,aff
1,11 (µ)

∫
Ω1

∂w1
∂x1

∂v1
∂x1
+ Sa,aff

1,12 (µ)
∫
Ω1

∂w1
∂x1

∂v1
∂x2
+ . . . (10)

+Sa,aff
Lreg,55(µ)

∫
ΩLreg

w1w1. (11)

Note that here for simplicity, we consider the case where there is no spatial
coordinates in [S`,aff

s (µ)]. In general (especially for axisymmetric case), some or

most of the integrals may take the form of
∫
Ωs
(x1)m(x2)n

∂wi

∂x j

∂vk

∂xl
, where m,n ∈ R.

Taking into account the symmetry of the bilinear form and the effective elastic
tensor matrix, there will be at most Qa = 7Lreg terms in the expansion. However,
in practice, most of the terms can be collapsed by noticing that not only there will
be a lot of zero entries in [Sa,aff

s (µ)], s = 1, . . ., Lreg, but also there will be a lot of
duplicated or “linearly dependent” entries, for example, Sa,aff

1,11 (µ)= [Const]Sa,aff
2,11 (µ).

We can then apply a symbolic manipulation technique [36] to identify, eliminate
all zero terms in (10) and collapse all “linear dependent” terms to end up with a
minimal Qa expansion. The same procedure is also applied for the linear forms
f (·;µ) and `(·;µ).

Hence the abstract formulation of the linear elasticity problem in the reference
domain Ω reads as follow: given µ ∈D, find

s(µ) = `(u(µ);µ),

where u(µ) ∈ X satisfies

a(u(µ),v;µ) = f (v;µ), ∀v ∈ X,

where all the bilinear and linear forms are in affine forms,

a(w,v;µ) =
Qa∑
q=1
Θ

a
q(µ)aq(w,v),

f (v;µ) =
Q f∑
q=1
Θ

f
q (µ) fq(v),

`(v;µ) =
Q`∑
q=1
Θ
`
q(µ)`q(v), ∀w,v,∈ X . (12)

11



Here Θa
q(µ), aq(w,v), q = 1, . . .,Qa, fq(v); Θ f

q (µ), fq(v), q = 1, . . .,Q f , and Θ`q(µ),
`q(v), q = 1, . . .,Q` are parameter-dependent coefficient and parameter-independent
bilinear and linear forms, respectively.

We close this section by defining several useful terms. We first define our inner
product and energy norm as

(w,v)X = a(w,v;µ) (13)

and ‖w‖X = (w,w)1/2, ∀w,v ∈ X , respectively, where µ ∈D is an arbitrary param-
eter. Certain other inner norms and associated norms are also possible [36]. We
then define our coercivity and continuity constants as

α(µ) = inf
w∈X

a(w,v;µ)
‖w‖2X

, (14)

γ(µ) = sup
w∈X

a(w,v;µ)
‖w‖2X

, (15)

respectively. We assume that a(·, ·;µ) is symmetric, a(w,v;µ) = a(v,w;µ), ∀w,v ∈
X , coercive, α(µ) > α0 > 0, and continuous, γ(µ) < γ0 < ∞; and also our f (·;µ)
and `(·;µ) are bounded functionals. It follows that problem which is well-defined
and has a unique solution. Those conditions are automatically satisfied given the
nature of our considered problems [38, 39].

2.3 Truth approximation
From now on, we shall restrict our attention to the “compliance” case ( f (·;µ) =
`(·;µ)). Extension to the non-compliance case will be discuss in the Section 5.

We now apply the finite element method and we provide a matrix formulation
[37]: given µ ∈D, we evaluate

s(µ) = [FN (µ)]T [uN (µ)], (16)

where [uN (µ)] represents a finite element solution uN (µ) ∈ XN ∈ X of size N
which satisfies

[KN (µ)][uN (µ)] = [FN (µ)]; (17)

here [KN (µ)], and [FN (µ)] and the (discrete forms) stiffness matrix and load
vector of a(·, ·;µ), and f (·;µ), respectively. Note that the stiffness matrix [KN (µ)]
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is symmetric positive definite (SPD). By invoking the affine forms (12), we can
express [KN (µ)], and [FN (µ)] as

[KN (µ)] =
Qa∑
q=1
Θ

a
q(µ)[KNq ],

[
FN (µ)

]
=

Q f∑
q=1
Θ

f
q (µ)[FNq ], (18)

where [KNq ], [FNq ] and are the discrete forms of the parameter-independent bilinear
and linear forms aq(·, ·) and fq(·), respectively. We also denote (the SPD matrix)
[YN ] as the discrete form of our inner product (13). We also assume that the size
of of our FE approximation, N is large enough such that our FE solution is an
accurate approximation of the exact solution.

3 Reduced Basis Method
In this Section we shall restrict our attention by recalling the RB method for
the “compliant” output. We shall first define the RB spaces and the Galerkin
projection. We then describe an Offline-Online computational strategy, which
allows us to obtain N -independent calculation of the RB output approximation
[17, 26].

3.1 RB Spaces and Greedy algorithm
To define the RB approximation we first introduce a (nested) Lagrangian parameter
sample for 1 ≤ N ≤ Nmax,

SN = {µ1,µ2, . . .,µN },

and associated hierarchical reduced basis spaces (XNN =)W
N
N , 1 ≤ N ≤ Nmax,

WNN = span{uN (µn),1 ≤ n ≤ N},

where µn ∈ D are determined by the means of a Greedy sampling algorithm
[36, 33]; this is an interarive procedure where at each step a new basis function is
added in order to improve the precision of the basis set.
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The key point of this methodology is the availability of an estimate of the error
induced by replacing the full space XN with the reduced order one WNN in the
variational formulation. More specifically we assume that for all µ ∈D there exist
an estimator η(µ) such that

| |uN (µ)−uNRB,N (µ)| | ≤ η(µ),

whereuN (µ) ∈ XN ∈ X represents the finite element solution, uNRB,N (µ) ∈ XNN ⊂ XN

the reduced basis one and we can choose either the induced or the energy norm.
During this iterative basis selection process and if at the j-th step a j-dimensional

reduced basis spaceWNj is given, the next basis function is the one that maximizes
the estimated model order reduction error given the j-dimensional space WNj over
D. So at the n+1 iteration we select

µn+1 = arg max
µ∈D

η(µ)

and compute uN (µn+1) to enrich the reduced space. This is repeated until the
maximal estimated error is below a required error tolerance. With this choice the
greedy algorithm always selects the next parameter sample point as the one for
which the model error is the maximum as estimated by η(µ) and this yields a basis
that aims to be optimal in the maximum norm overD.

Furthermore we can rewrite the reduced space as

WNN = span{ζNn ,1 ≤ n ≤ N},

where the basis functions
{
ζN

}
are computed from the snapshots uN (µ) by aGram-

Schmidt orthonormalization process such that [ζNm ]T [YN ][ζNn ]= δmn, where δmn is
the Kronecker-delta symbol. We then define our orthonormalized-snapshot matrix
[ZN ] ≡ [ZNN ] = [[ζ

N
1 ]| · · · |[ζ

N
n ]] of dimension N ×N .

3.2 Galerkin Projection
We then apply a Galerkin projection on our “truth” problem [1, 27, 28, 29, 36]:
given µ ∈D, we could evaluate the RB output as

sN (µ) = [FN (µ)]T [uNRB,N (µ)],

where
[uNRB,N (µ)] = [ZN ][uN (µ)] (19)
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represents the RB solution uNRB,N (µ) ∈ XNN ⊂ XN of size N . Here [uN (µ)] is the
RB coefficient vector of dimension N satisfies the RB “stiffness” equations

[KN (µ)][uN (µ)] = [FN (µ)], (20)

where

[KN (µ)] = [ZN ]T [KN (µ)][ZN ],
[FN (µ)] = [ZN ]T [FN (µ)]. (21)

Note that the system (20) is of small size: it is just a set of N linear algebraic
equations, in this way we can now evaluate our output as

sN (µ) = [FN (µ)]T [uN (µ)]. (22)

It can be shown [31] that the condition number of the RB “stiffness” matrix
[ZN ]T [KN (µ)][ZN ] is bounded by γ0(µ)/α0(µ), and independent of both N and
N .

3.3 Offline-Online Procedure
Although the system (20) is of small size, the computational cost for assembling the
RB “stiffness” matrix (and the RB “output” vector [FN (µ)]T [ZN ]) is still involves
N and costly, O(NN2+N2N) (and O(NN), respectively). However, we can use
our affine forms (12) to construct very efficient Offline-Online procedures, as we
shall discuss below.

We first insert our affine forms (18) into the expansion (20) and (22), by using
(21) we obtain

Qa∑
q=1
Θ

a
q(µ)[KqN ][uN (µ)] =

Q f∑
q=1
Θ

f
q (µ)[FqN ]

and

sN (µ) =
Q f∑
q=1
Θ

f
q (µ)[FqN ][uN (µ)],

respectively. Here

[KqN ] = [ZN ]T [KNq ][ZN ], 1 ≤ q ≤ Qa[
FqN

]
= [ZN ]T [FNq ], 1 ≤ q ≤ Q f ,
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are parameter independent quantities that can be computed just once and than
stored for all the subsequent µ-dependent queries. We then observe that all
the “expensive” matrices [KqN ], 1 ≤ q ≤ Qa, 1 ≤ N ≤ Nmax and vectors [FqN ],
1 ≤ q ≤ Q f , 1 ≤ N ≤ Nmax, are now separated and parameter-independent, hence
those can be pre-computed in an Offline-Online procedure.

In the Offline stage, we first compute the [uN (µn)], 1 ≤ n ≤ Nmax, form the
matrix [ZNmax] and then form and store [FNmax] and [KqNmax]. The Offline opera-
tion count depends on Nmax, Qa and N but requires only O(QaN2

max +Q f Nmax +
Q`Nmax) permanent storage.

In the Online stage, for a given µ and N (1 ≤ N ≤ Nmax), we retrieve the pre-
computed [KqN ] and [FN ] (subarrays of [KqNmax], [FNmax]), form [KN (µ)], solve
the resulting N ×N system (20) to obtain {uN (µ)}, and finally evaluate the output
sN (µ) from (22). The Online operation count is thus O(N3) and independent ofN .
The implication of the latter is two-fold: first, we will achieve very fast response in
the many-query and real-time contexts, as N is typically very small, N �N ; and
second, we can chooseN arbitrary large – to obtain as accurate FE predictions as
we wish – without adversely affecting the Online (marginal) cost.

4 A posteriori error estimation
In this Section we recall the a posteriori error estimator for our RB approximation.
We shall discuss in details the computation procedures for the two ingredients of
the error estimator: the dual norm of the residual and the coercivity lower bound.
We first present the Offline-Online strategy for the computation of the dual norm
of the residual; we then briefly discuss the Successive Constraint Method [22] in
order to compute the coercivity lower bound.

4.1 Definitions
We first introduce the error eN (µ) ≡ uN (µ) − uNRB,N (µ) ∈ XN and the residual
rN (v;µ) ∈ (XN )′ (the dual space to XN ), ∀v ∈ XN ,

rN (v;µ) = f (v)− a(uN (µ),v;µ), (23)

which can be given in the discrete form as

[rN (µ)] = [FN (µ)]− [KN (µ)][uNRB,N (µ)]. (24)
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We then introduce the Riesz representation of rN (v;µ): ê(µ) ∈ XN defined by
(ê(µ),v)XN = rN (v;µ), ∀v ∈ XN . In vector form, ê(µ) can be expressed as

[YN ][ê(µ)] = [rN (µ)]. (25)

We also require a lower bound to the coercivity constant

αN (µ) = inf
w∈XN

a(w,w;µ)
‖w‖2

XN
, (26)

such that 0 < αNLB(µ) ≤ α
N (µ), ∀µ ∈D.

We may now define our error estimator for our output as

∆
s
N (µ) ≡

‖ê(µ)‖2
XN

αNLB
, (27)

where ‖ê(µ)‖XN is the dual norm of the residual. We can also equip the error
estimator with an effectivity defined by

ηs
N (µ) ≡

∆s
N (µ)

|sN (µ)− sN (µ)|
. (28)

We can readily demonstrate [36, 31] that

1 ≤ ηs
N (µ) ≤

γ0(µ)
αNLB(µ)

, ∀µ ∈D;

so that the error estimator is both rigorous and sharp. Note that here we can only
claim the sharp property for this current “compliant” case.

We shall next provide procedures for the computation of the two ingredients of
our error estimator: we shall first discuss the Offline-Online strategy to compute
the dual norm of the residual ‖ê(µ)‖XN , and then provide the construction for the
lower bound of the coercivity constant αN (µ).

4.2 Dual norm of the residual
In discrete form, the dual norm of the residual ε(µ) = ‖ê(µ)‖XN is given by

ε2(µ) = [ê(µ)]T [YN ][ê(µ)]. (29)
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We next invoke (24), (25) and (29) to arrive at

ε2(µ) =
(
[FN (µ)]− [KN (µ)][uNRB,N (µ)])

)T

[YN ]−1
(
[FN (µ)]− [KN (µ)][uNRB,N (µ)]

)
= [FN (µ)]T [YN ]−1[FN (µ)]−2[FN (µ)]T [YN ]−1[KN (µ)]
+[KN (µ)]T [YN ]−1[KN (µ)]. (30)

We next defines the “pseudo”-solutions [P f
q ] = [YN ]−1[FNq ], 1 ≤ q ≤ Q f and

[Pa
qN ] = [Y

N ]−1[KNq ][ZN ], 1 ≤ q ≤ Qa, then apply the affine form (18) and (19)
into (30) to obtain

ε2(µ) =
Q f∑
q=1

Q f∑
q′=1
Θ

f
q (µ)Θ f

q′(µ)
(
[P f

q ]T [YN ][P f
q′]

)
(31)

−2
Qa∑
q=1

Q f∑
q′=1
Θ

a
q(µ)Θ

f
q′(µ)

(
[P f

q ]T [YN ][Pa
q′N ]

)
[uRB

N (µ)]

+

Qa∑
q=1

Qa∑
q′=1
Θ

a
q(µ)Θa

q′(µ)[uRB
N (µ)]T

(
[Pa

qN ]
T [YN ][Pa

q′N ]
)
[uRB

N (µ)].

It is observed that all the terms in bracket in (31) are all parameter-independent,
hence they can be pre-computed in the Offline stage. The Offline-Online strategy
is now clear.

In the Offline stage we form the parameter-independent quantities. We first
compute the “pseudo”-solutions [P f

q ] = [YN ]−1[FNq ], 1 ≤ q ≤ Q f and [Pa
qN ] =

[YN ]−1[KNq ][ZN ], 1 ≤ q ≤ Qa, 1 ≤ N ≤ Nmax; and form/store [P f
q ]T [YN ][P f

q′],
1 ≤ q,q′ ≤ Q f , [P f

q ]T [YN ][Pa
q′N ], 1 ≤ q ≤ Q f , 1 ≤ q ≤ Qa, 1 ≤ N ≤ Nmax,

[Pa
qN ][Y

N ][Pa
q′N ], 1 ≤ q,q′ ≤ Qa, 1 ≤ N ≤ Nmax. The Offline operation count

depends on Nmax, Qa, Q f , and N .
In the Online stage, for a given µ and N (1 ≤ N ≤ Nmax), we retrieve the

pre-computed quantities [P f
q ]T [YN ][P f

q′], 1 ≤ q,q′ ≤ Q f , [P f
q ]T [YN ][Pa

q′N ], 1 ≤
q ≤ Q f , 1 ≤ q ≤ Qa, and [Pa

qN ]
T [YN ][Pa

q′N ], 1 ≤ q,q′ ≤ Qa, and then evaluate the
sum (31). The Online operation count is dominated by O(((Qa)2+ (Q f )2)N2) and
independent of N .
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4.3 Lower bound of the coercivity constant
We now briefly address some elements for the computation of the lower bound in
the coercive case. In order to derive the discrete form of the coercivity constant
(26)we introduce the discrete eigenvalue problem: given µ ∈D, find theminimum
set ([χmin(µ)], λmin(µ)) such that

[KN (µ)][χ(µ)] = λmin[YN ][χ(µ)],
[χ(µ)]T [YN ][χ(µ)] = 1. (32)

We can then recover
αN (µ) =

√
λmin(µ). (33)

However, the eigenproblem (32) is of size N , so using direct solution as an
ingredient for our error estimator is very expensive. Hence, we will construct an
inexpensive yet of good quality lower bound αNLB(µ) and use this lower bound
instead of the truth (direct) expensive coercivity constant αN (µ) in our error
estimator.

For our current target problems, our bilinear form is coercive and symmetric.
We shall construct our coercivity lower bound by the SuccessiveConstraintMethod
(SCM) [22]. It is noted that the SCM method can be readily extended to non-
symmetric as well as non-coercive bilinear forms [22, 36, 31, 23].

We first introduce an alternative (albeit not very computation-friendly) discrete
form for our coercivity constant as

minimum
Qa∑
q=1
Θ

a
q(µ)yq, (34)

subject to yq =
[wq]T [KNq ][wq]
[wq]T [YN ][wq]

, 1 ≤ q ≤ Qa,

where [wq] is the discrete vector of any arbitrary wy ∈ XN .
We shall now “relax” the constraint in (34) by defining the “continuity con-

straint box” associated with yq,min and yq,max, 1 ≤ q ≤ Qa obtained from the
minimum set ([y−(µ)], yq,min) and maximum set ([y+(µ)], yq,max) solutions of the
eigenproblems

[KNq ][y−(µ)] = yq,min[YN ][y−(µ)],
[y−(µ)] [YN ][y−(µ)] = 1,
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and

[KNq ][y+(µ)] = yq,max[YN ][y+(µ)],
[y+(µ)] [YN ][y+(µ)] = 1,

respectively, for 1 ≤ q ≤ Qa. We next define a “coercivity constraint” sample

CJ = {µSCM
1 ∈D, . . .,µSCM

J ∈D},

and denote CM,µ
J the set of M (1 ≤ M ≤ J) points in CJ closest (in the usual

Euclidean norm) to a given µ ∈ D. The construction of the set CJ is done by
means of a Greedy procedure [22, 36, 31]. The Greedy selection of CJ can be
called the “Offline stage”, which involves the solutions of J eigenproblems (32) to
obtain αN (µ), ∀µ ∈ CJ .

We may now define our lower bound αNLB(µ) as the solution of

minimum
Qa∑
q=1
Θ

a
q(µ)yq, (35)

subject to yq,min ≤ yq ≤ yq,max, 1 ≤ q ≤ Qa,

Qa∑
q=1
Θ

a
q(µ′)yq ≥ αN (µ′), ∀µ′ ∈ CM,µ

J .

We then “restrict” the constraint in (34) and define our upper bound αNUB(µ) as
the solution of

mininum
Qa∑
q=1
Θ

a
q(µ)yq,∗(µ′), (36)

subject to yq,∗(µ′) = [χ(µ′)]T [KNq ][χ(µ′)], 1 ≤ q ≤ Qa, ∀µ′ ∈ CM,µ
J ,

where [χ(µ)] is defined by (32). It can be shown [22, 36, 31] that the feasible
region of (36) is a subset of that of (34), which in turn, is a subset of that of (35):
hence αNLB(µ) ≤ α

N (µ) ≤ αNUB(µ).
We note that the lower bound (35) is a linear optimization problem (or Linear

Program (LP)) which contains Qa design variables and 2Qa +M inequality con-
straints. Given a value of the parameter µ, the Online evaluation µ→ αNLB(µ) is
thus as follows: we find the subset CM,µ

J of CJ for a given M , we then calculate
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αNLB(µ) by solving the LP (35). The crucial point here is that the online evaluation
µ→ αNLB(µ) is totally independent of N . The upper bound (35), however, can be
obtained as the solution of just a simple enumeration problem; the online evalua-
tion of αNUB(µ) is also independent of N . In general, the upper bound αNUB(µ) is
not used in the calculation of the error estimator, however, it is used in the Greedy
construction of the set CJ [22]. In practice, when the set CJ does not guarantee to
produce a positive αNLB(µ), the upper bound α

N
UB(µ) can be used as a substitution

for αNUB(µ) since it approximates the “truth” αN (µ) in a very way; however we will
lose the rigorous property of the error estimators.

5 Extension of the RBmethod to non-compliant out-
put

We shall briefly provide the extension of our RB methodology for the “non-
compliant” case in this Section. We first present a suitable primal-dual formulation
for the “non-compliant” output; we then briefly provide the extension to the RB
methodology, including the RB approximation and its a posteriori error estimation.

5.1 Adjoint Problem
We shall briefly discuss the extension of our methodology to the non-compliant
problems. We still require that both f and ` are bounded functionals, but now
( f (·;µ) , `(·;µ)). We still use the previous abstract statement in Section 2. We
begin with the definition of the dual problem associated to `: find ψ(µ) ∈ X (our
“adjoint” or “dual” field) such that

a(v,ψ(µ);µ) = −`(µ), ∀v ∈ X .

5.2 Truth approximation
We now again apply the finite element method to the dual formulation: given
µ ∈D, we evaluate

s(µ) = [LN (µ)]T [uN (µ)],
where [uN (µ)] is the finite element solution of sizeN satisfying (17). The discrete
form of the dual solution ψN (µ) ∈ XN is given

[KN (µ)][ψN (µ)] = −[LN (µ)];
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here [LN (µ)] is the discrete load vector of `(·;µ). We also invoke the affine forms
(12) to express [LN (µ)] as

[LN (µ)] =
Q`∑
q=1
Θ
`
q(µ)[LNq ], (37)

where all the [LNq ] are the discrete forms of the parameter-independent linear forms
`q(·), 1 ≤ q ≤ Q`.

5.3 Reduced Basis Approximation
We now define our RB spaces: we shall need to define two Lagrangian parameter
samples set, SNpr = {µ1,µ2, . . .,µNpr} and SNdu = {µ1,µ2, . . .,µNdu} corresponding
to the set of our primal and dual parameter samples set, respectively. We also
associate the primal and dual reduced basis spaces (XNNpr =)WNNpr , 1 ≤ N ≤ Npr

max
and (XN

Ndu =)WNNdu , 1 ≤ N ≤ Ndu
max to our SNpr and SNdu set, respectively, which are

constructed from the primal uN (µ) and dual ψN (µ) snapshots by a Gram-Schmidt
process as in Section 3. Finally, we denote our primal and dual orthonormalized-
snapshot as [Zpr

Npr] and [Zdu
Ndu] basis matrices, respectively.

5.4 Galerkin Projection
We first denote the RB primal approximation to the primal “truth” approximation
uN (µ) as uNRB,N (µ) and the RB dual approximation to the primal “truth” dual
approximationψN (µ) asψNRB,N (µ): their discrete forms are given by [uNRB,Npr(µ)]=
[Zpr

Npr][uNpr(µ)] and [ψN
RB,Ndu(µ)] = [Zdu

Ndu][ψNdu(µ)], respectively.
We then apply a Galerkin projection (note that in this case, a Galerkin-Petrov

projection is also possible [36, 31, 3]). given a µ ∈D, we evaluate the RB output

sNpr,Ndu(µ) = [LN (µ)]T [uNRB,Npr(µ)]− [rNpr (µ)]T [ψNRB,Ndu(µ)],

recall that [rNpr (µ)] is the discrete form of the RB primal residual defined in (23).

22



The RB coefficient primal and dual are given by

Qa∑
q=1
Θ

a
q(µ)[KqNprNpr][uNpr(µ)] =

Q f∑
q=1
Θ

f
q (µ)[FqNpr],

Qa∑
q=1
Θ

a
q(µ)[KqNduNdu[ψNdu(µ)] = −

Q`∑
q=1
Θ
`
q(µ)[LqNdu]. (38)

Note that the two systems (38) are also of small size: their sizes are of Npr and
Ndu, respectively. We can now evaluate our output as

sNpr,Ndu(µ) =
Q`∑
q=1
Θ
`
q(µ)[LqNpr][uNpr(µ)]−

Q f∑
q=1
Θ

f
q (µ)[FqNdu][ψNdu(µ)]

+

Qa∑
q=1
Θ

a
q(µ)[ψNdu(µ)]T [KqNduNpr][uNpr(µ)]. (39)

All the quantities in (38) and (39) are given by

[KqNprNpr] = [Zpr
Npr]T [Kq][Zpr

Npr], 1 ≤ q ≤ Qa, 1 ≤ Npr ≤ Npr
max,[

KqNduNdu
]
= [Zdu

Ndu]T [Kq][Zdu
Ndu], 1 ≤ q ≤ Qa, 1 ≤ Ndu ≤ Ndu

max,[
KqNduNpr

]
= [Zdu

Ndu]T [Kq][Zpr
Npr], 1 ≤ q ≤ Qa, 1 ≤ Npr ≤ Npr

max, 1 ≤ Ndu ≤ Ndu
max[

FqNpr
]
= [Zpr

Npr]T [Fq], 1 ≤ q ≤ Q f , 1 ≤ Npr ≤ Npr
max,[

FqNdu
]
= [Zdu

Ndu]T [Fq], 1 ≤ q ≤ Q f , 1 ≤ Ndu ≤ Ndu
max,[

LqNpr
]
= [Zpr

Npr]T [Lq], 1 ≤ q ≤ Q`,1 ≤ Npr ≤ Npr
max,[

LqNdu
]
= [Zdu

Ndu]T [Lq], 1 ≤ q ≤ Q`,1 ≤ Ndu ≤ Ndu
max.

The computation of the output sNpr,Ndu(µ) clearly admits an Offline-Online com-
putational strategy similar to the one we discuss previously in Section 3.

5.5 A posteriori error estimation
We now introduce the dual residual rNdu(v;µ),

rNdu(v;µ) = −`(v)− a(v,ψNNdu(µ);µ), ∀v ∈ XN .
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and its Riesz representation of rNdu(v;µ): êdu(µ) ∈ XN defined by (êdu(µ),v)XN =
rNdu(v;µ), ∀v ∈ XN .

We may now define our error estimator for our output as

∆
s
NprNdu(µ) ≡

‖êpr(µ)‖XN
(αNLB)1/2

‖êdu(µ)‖XN
(αNLB)1/2

, (40)

where êpr(µ) is the Riesz representation of the primal residual. We then define the
effectivity associated with our error bound

ηs
NprNdu(µ) ≡

∆s
NprNdu(µ)

|sN (µ)− sNprNdu(µ)|
. (41)

We can readily demonstrate [36, 31, 15] that

1 ≤ ηs
NprNdu(µ), ∀µ ∈D;

note that the error estimator is still rigorous, however it is less sharp than that in
the “compliant” case since in this case we could not provide an upper bound to
ηs

NprNdu(µ).
The computation of the dual norm of the primal/dual residual also follows an

Offline-Online computation strategy: the dual norm of the primal residual is in
fact, the same as in Section 4.2; the same procedure can be applied to compute the
dual norm of the dual residual.

6 Numerical results
In this sections we shall consider several “model problems” to demonstrate the
feasibility of our methodology. We note that in all cases, these model problems
are presented in non-dimensional form unless stated otherwise. In all problems
below, displacement is, in fact, in non-dimensional form u = ũẼ/σ̃0, where ũ,
Ẽ , σ̃0 are the dimensional displacement, Young’s modulus and load strength,
respectively, while E and σ0 are our non-dimensional Young’s modulus and load
strength and usually are around unity.

We shall not provide any details for Θa
q(µ), Θ

f
q (µ) and Θ`q(µ) and their associ-

ated bilinear and linear forms aq(·, ·), fq(·) and `q(·) for any of the below examples
as they are usually quite complex, due to the complicated structure of the effective
elastic tensor and our symbolic manipulation technique. We refer the users to
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[21, 31, 40, 24], in which all the above terms are provided in details for some
simple model problems.

In the below, the timing tFE for an evaluation of the FE solution µ→ sN (µ)
is the computation time taken by solving (17) and evaluating (16) by using (18)
and (37), in which all the stiffness matrix components, [Kq], 1 ≤ q ≤ Qa, load and
output vector components, [Fq], 1 ≤ q ≤Q f and [Lq], 1 ≤ q ≤Q`, respectively, are
pre-computed and pre-stored. We do not include the computation time of forming
those components (or alternatively, calculate the stiffness matrix, load and output
vector directly) in tFE.

Finally, for the sake of simplicity, we shall denote the number of basis N
defined as N = Npr = Ndu in all of our model problems in this Section.

6.1 The arc-cantilever beam
We consider a thick arc cantilever beam correspond to the domainΩo(µ) represent-
ing the shape of a quarter of an annulus as shown in Figure 1. We apply (clamped)
homogeneous Dirichlet conditions on Γo

D and non-homogeneous Neumann bound-
ary conditions corresponding to a unit tension on Γo

N . The width of the cantilever
beam is 2d, and the material is isotropic with (E, ν) = (1,0.3) under plane stress
assumption. Our output of interest is the integral of the tangential displacement
(u2) over Γo

N , which can be interpreted as the average tangential displacement on
Γo

N 4. Note that our output of interest is “non-compliant”.

2d

Γo
N

Γo
D

Figure 1: The arc-cantilever beam

4The average tangential displacement on Γo
N is not exactly s(µ) but rather s(µ)/lΓo

N
, where lΓo

N

is the length of Γo
N . It is obviously that the two descriptions of the two outputs, ”integral of” and

“average of”, are pretty much equivalent to each other.
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The parameter is the half-width of the cantilever beam µ = [µ1] ≡ [d]. The
parameter domain is chosen asD = [0.3,0.9], which can model a moderately thick
beam to a very thick beam. We then choose µref = 0.3 and apply the domain
decomposition and obtain Lreg = 9 subdomains as shown in Figure 2, in which
three subdomains are the general “curvy triangles”, generated by our computer
automatic procedure [36]. Note that geometric transformations are relatively
complicated, due to the appearances of the “curvy triangles” and all subdomains
transformations are classified as the “general transformation case” [31, 19]. We
then recover our affine forms with Qa = 54, Q f = 1 and Ql = 1.

We next consider a FE approximation where the mesh contains nnode = 2747
nodes and nelem = 5322 P1 elements, which corresponds to N = 5426 degrees of
freedoms5 as shown in Figure 2. To verify our FE approximation, we compare our
FE results with the approximated solution for thick arc cantilever beam by Roark
[41] for a 100 uniformly distributed test points in D: the maximum difference
between our results and Roark’s one is just 2.9%.

Figure 2: The arc-cantilever beam problem: Domain composition and FE mesh

We then apply our RB approximation. We present in Table 1 our convergence
results: the RB error bounds and effectivities as a function of N(= Npr = Ndu).
The error bound reported, EN = ∆

s
N (µ)/|sN (µ)| is the maximum of the relative

error bound over a random test sample Ξtest of size ntest = 100. We denote by ηs
N

the average of the effectivity ηs
N (µ) over Ξtest. We observe that average effectivity

is of order O(20−90), not very sharp, but this is expected due to the fact that the
output is “non-compliant”.

As regards computational times, a RB online evaluation µ→ (sN (µ),∆s
N (µ))

requires just tRB = 115(ms) for N = 10; while the FE solution µ→ sN (µ) requires

5Note that N , 2nnode since Dirichlet boundary nodes are eliminated from the FE system.
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N EN ηs
N

2 3.57E+00 86.37
4 3.70E-03 18.82
6 4.07E-05 35.72
8 6.55E-07 41.58
10 1.99E-08 40.99

Table 1: The arc-cantilever beam: RB convergence

tFE = 9(s): thus our RB online evaluation is just 1.28% of the FEM computational
cost.

6.2 The center crack problem
We next consider a fracture model corresponds to a center crack in a plate under
tension at both sides as shown in Figure 3.

Figure 3: The center crack problem

Due to the symmetry of the geometry and loading, we only consider one quarter
of the physical domain, as shown in Figure 3, note that the crack corresponds to
the boundary segment Γo

C . The crack (in our “quarter” model) is of size d, and the
plate is of height h (and of fixed width w = 1). We consider plane strain isotropic
material with (E, ν) = (1,0.3). We consider (symmetric about the xo

1 direction
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and xo
2 direction) Dirichlet boundary conditions on the left and bottom boundaries

Γo
L and Γo

B, respectively; and non-homogeneous Neumann boundary conditions
(tension) on the top boundary Γo

T . Our ultimate output of interest is the stress
intensity factor (SIF) for the crack, which will be derived from an intermediate
(compliant) energy output by application of the virtual crack extension approach
[30]. The SIF plays an important role in the field of fracture mechanics, for
examples, if we have to estimate the propagation path of cracks in structures [18].
We further note that analytical result for SIF of a center-crack in a plate under
tension is only available for the infinite plate [25], which can be compared with
our solutions for small crack length d and large plate height h values.

w

Γo
T

Γo
L

h

Γo
C Γo

B

d

Figure 4: The center crack problem

Our parameters are the crack length and the plate height µ = [µ1, µ2] ≡ [d, h],
and the parameter domain is given by D = [0.3,0.7]× [0.5,2.0]. We then choose
µref = [0.5,1.0] and apply a domain decomposition: the final setting contains
Lreg = 3 subdomains, which in turn gives us Qa = 10 and Q f = 1. Note that our
“compliant” output s(µ) is just an intermediate result for the calculation of the SIF.
In particular, the virtual crack extension method (VCE) [30] allows us to extract
the “Mode-I” SIF though the energy s(µ) though the Energy Release Rate (ERR),
G(µ), defined by

G(µ) = −
(
∂s(µ)
∂µ1

)
.

In practice, the ERR is approximated by a finite-difference (FD) approach for a
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N EN ηs
N

5 2.73E-02 6.16
10 9.48E-04 8.47
20 5.71E-06 7.39
30 5.59E-08 7.01
40 8.91E-10 7.54
50 6.26E-11 8.32

Table 2: The center crack problem: RB convergence

suitable small value δµ1 as

Ĝ(µ) = −
(

s(µ+ δµ1)− s(µ)
δµ1

)
,

which then give the SIF approximation ŜIF(µ) =
√

Ĝ(µ)/(1− ν2).
We then consider a FE approximation with a mesh contains nnode = 3257

nodes and nelem = 6276 P1 elements, which corresponds to N = 6422 degrees
of freedoms; the mesh is refined around the crack tip in order to give a good
approximation for the (singular) solution near this region as shown in Figure 5.

Figure 5: The center crack problem: Domain composition and FE mesh

We present in Table 2 the convergence results for the “compliant” output s(µ):
the RB error bounds and effectivities as a function of N . The error bound reported,
EN = ∆

s
N (µ)/|sN (µ)| is the maximum of the relative error bound over a random

test sample Ξtest of size ntest = 200. We denote by ηs
N the average of the effectivity

ηs
N (µ) over Ξtest. We observe that the effectivity average is very sharp, and of order

O(10).
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We next define the ERR RB approximation ĜN (µ) to our “truth” (FE) ĜNFE(µ)
and its associated ERR RB error ∆Ĝ

N (µ) by

ĜN (µ) =
sN (µ)−∆s

N (µ+ δµ1)
δµ1

,

∆
Ĝ
N (µ) =

∆s
N (µ+ δµ1)+∆s

N (µ)
δµ1

. (42)

It can be readily proven [36] that our SIF RB error is a rigorous bound for the
ERR RB prediction ĜN (µ): |ĜN (µ)− ĜNFE(µ)| ≤ ∆

Ĝ
N (µ). It is note that the choice

of δµ1 is not arbitrary: δµ1 needed to be small enough to provide a good FD
approximation, while still provide a good ERR RB error bound (42). Here we
choose δµ1 = 1E−03.

We then can define the SIF RB approximation ŜIFN (µ) to our “truth” (FE)
ŜIF
N
FE(µ) and its associated SIF RB error estimation ∆ŜIF

N (µ) as

ŜIFN (µ) =
1

2
√

1− ν2

{√
ĜN (µ)+∆Ĝ

N (µ)+
√

ĜN (µ)−∆Ĝ
N (µ)

}
,

∆
ŜIF
N (µ) =

1
2
√

1− ν2

{√
ĜN (µ)+∆Ĝ

N (µ)−
√

ĜN (µ)−∆Ĝ
N (µ)

}
.

It is readily proven in [21] that |ŜIFN (µ)− ŜIF
N
FE(µ)| ≤ ∆ŜIF

N (µ).
We plot the SIF RB results ŜIF(µ) with error bars correspond to ∆ŜIF

N (µ), and
the analytical results ŜIF(µ) [25] in Figure 6 for the case µ1 ∈ [0.3,0.7], µ2 = 2.0
for N = 15. It is observed that the RB error is large since the small number of
basis N = 15 does not compromise the small δµ1 = 1E−03 value. We next plot,
in Figure 7, SIF RB results and error for the same µ range as in Figure 6, but for
N = 30. It is observed now that the SIF RB error is significantly improved – thanks
to the better RB approximation that compensates the small value δµ1. We also
want to point out that, in both Figure 6 and Figure 7, it is clearly shown that our
RB SIF error is not a rigorous bound for the exact SIF values ŜIF(µ) but rather
is a rigorous bound for the “truth” (FE) approximation ŜIF

N
FE(µ). It is shown,

however, that FE SIF approximation (which is considered in Figure 7 thanks to the
negligible RB error) are of good quality compared with the exact SIF. The VCE in
this case works quite well, however it is not suitable for complicate crack settings.
In such cases, other SIF calculation methods and appropriate RB approximations
might be preferable [21, 19].
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Figure 6: The center crack problem: SIF solution for N = 15
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Figure 7: The center crack problem: SIF solution for N = 30
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As regards computational times, a RB online evaluation µ→(ŜIFN (µ),∆ŜIF
N (µ)

requires just tRB(= 25×) = 50(ms) for N = 40; while the FE solution µ→ ŜIF
N
FE(µ)

requires tFE(= 7×2) = 14(s): thus our RB online evaluation takes only 0.36% of
the FEM computational cost.

6.3 The composite unit cell problem
We consider a unit cell contains an ellipse region as shown in Figure 8. We apply
(clamped) Dirichlet boundary conditions on the bottom of the cell Γo

B and (unit
tension) non-homogeneous Neumann boundary conditions on Γo

T . We denote
the two semimajor axis and semiminor axis of the ellipse region as d1 and d2,
respectively. We assume plane stress isotropic materials: the material properties
of the matrix (outside of the region) is given by (Em, νm) = (1,0.3), and the material
properties of the ellipse region is given by (E f , ν f ) = (E f ,0.3). Our output of
interest is the integral of normal displacement (u1) over Γo

T . We note our output of
interest is thus “compliant”.

(Ef , νf)

2d1

Γo
T

Γo
B

2d2

(Em, νm)

Figure 8: The composite unit cell problem

We consider P = 3 parameters µ = [µ1, µ2, µ3] ≡ [d1,d2,E f ]. The parameter
domain is chosen as D = [0.8,1.2] × [0.8,1.2] × [0.2,5]. Note that the third pa-
rameter (the Young modulus of the ellipse region) can represent the ellipse region
from an “inclusion” (with softer Young’s modulus E f < Em(= 1)) to a “fiber” (with
stiffer Young’s modulus E f > Em(= 1)).

We then choose µref = [1.0,1.0,1.0] and apply the domain decomposition [36]
and obtain Lreg = 34 subdomains, in which 16 subdomains are the general “curvy
triangles” (8 inward “curvy triangles” and 8 outward curvy “triangles”) as shown
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in Figure 9. However, despite the large number of “curvy triangles” in the domain
decomposition, it is observed that almost all transformations are congruent, hence
we expected a small number of Qa than (says), that of the “arc-cantilever beam”
example, in which all the subdomains transformations are different. Indeed, we
recover our affine forms with Qa = 30 and Q f = 1, note that Qa is relatively
small for such a complex domain decomposition thanks to our efficient symbolic
manipulation “collapsing” technique and those congruent “curvy triangles”.

We next consider a FE approximation where the mesh contains nnode = 3906
nodes and nelem = 7650 P1 elements, which corresponds to N = 7730 degrees
of freedoms. The mesh is refined around the interface of the matrix and the
inclusion/fiber.

Figure 9: The composite unite cell problem: Domain composition and FE mesh

We then apply the RB approximation. We present in Table 3 our convergence
results: the RB error bounds and effectivities as a function of N . The error bound
reported, EN = ∆

s
N (µ)/|sN (µ)| is the maximum of the relative error bound over a

random test sample Ξtest of size ntest = 200. We denote by ηs
N the average of the

effectivity ηs
N (µ) over Ξtest. We observe that our effectivity average is of order

O(10).
As regards computational times, a RB online evaluation µ→ (sN (µ),∆s

N (µ))
requires just tRB = 66(ms) for N = 30; while the FE solution µ→ sN (µ) requires
approximately tFE = 8(s): thus our RB online evaluation is just 0.83% of the FEM
computational cost.

6.4 The multi-material plate problem
We consider a unit cell divided into 9 square subdomains of equal size as shown in
Figure 10. We apply (clamped) Dirichlet boundary conditions on the bottom of the
cell Γo

B and (unit tension) non-homogeneous Neumann boundary conditions on Γo
T .
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N EN ηs
N

5 9.38E-03 8.86
10 2.54E-04 7.18
15 1.37E-05 5.11
20 3.91E-06 9.74
25 9.09E-07 6.05
30 2.73E-07 10.64
35 9.00E-08 10.17
40 2.66E-08 10.35

Table 3: The composite unit cell problem: RB convergence

We consider orthotropic plane stress materials: the Young’s modulus properties
for all 9 subdomains are given in Figure, the Poisson’s ratio is chosen as ν12,i = 0.3,
i = 1, . . .,9 and ν21,i is determined by (44). The shear modulus is chosen as a
function of the two Young’s moduli as in (45) for all 9 subdomains. All material
axes are aligned with the coordinate system (and loading). Our output of interest
is the integral of normal displacement (u1) over Γo

T , which represents the average
normal displacement on Γo

T . We note our output of interest is thus “compliant”.

(1, µ1)

Γo
T

Γo
B

(1, µ1) (µ3, µ4) (1, µ2)

(µ3, µ4) (µ5, µ6) (µ3, µ4)

(1, µ2) (µ3, µ4)

Figure 10: The multi-material problem

We consider P = 6 parameters µ = [µ1, . . ., µ6], correspond to the six Young’s
moduli values as shown in Figure 10 (the two Young’s moduli for each subdomain
are shown in those brackets). The parameter domain is chosen asD = [0.5,2.0]6.

We then apply the domain decomposition [36] and obtain Lreg = 18 subdo-
mains. Despite the large Lreg number of domains, there is no geometric transfor-
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N EN ηs
N

5 1.01E-02 8.11
10 1.45E-03 11.16
20 3.30E-04 11.47
30 1.12E-04 12.59
40 2.34E-05 11.33
50 9.85E-06 12.90

Table 4: The multi-material problem: RB convergence

mation in this case. We recover our affine forms with Qa = 12, Q f = 1, note that
all Qa are contributed from all the Young’s moduli since there is no geometric
transformation involved. Moreover, it is observed that the bilinear form can be, in
fact, classified as a “parametrically coercive” one [31].

We next consider a FE approximation where the mesh contains nnode = 4098
nodes and nelem = 8032 P1 elements, which corresponds to N = 8112 degrees
of freedoms. The mesh is refined around all the interfaces between different
subdomains as shown in Figure 11.

Figure 11: The multi-material problem: Domain composition and FE mesh

We then apply the RB approximation. We present in Table 4 our convergence
results: the RB error bounds and effectivities as a function of N . The error bound
reported, EN = ∆

s
N (µ)/|sN (µ)| is the maximum of the relative error bound over a

random test sample Ξtest of size ntest = 200. We denote by ηs
N the average of the

effectivity ηs
N (µ) over Ξtest. We observe that our effectivity average is of order

O(10).
As regards computational times, a RB online evaluation µ→ (sN (µ),∆s

N (µ))
requires just tRB = 33(ms) for N = 40; while the FE solution µ→ sN (µ) requires
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tFE = 8.1(s): thus the RB online evaluation is just 0.41% of the FEM computational
cost.

6.5 The woven composite beam problem
We consider a composite cantilever beam as shown in Figure 12. The beam is
divided into two regions, each with a square hole in the center of (equal) size 2w.
We apply (clamped) Dirichlet boundary conditions on the left side of the beam
Γo

L , (symmetric about the xo
1 direction) Dirichlet boundary conditions on the right

side of the beam Γo
R, and (unit tension) non-homogeneous Neumann boundary

conditions on the top side Γo
T . We consider the same orthotropic plane stress

materials for both regions: (E1,E2) = (1,E2), ν12 = 0.3, ν21 is determined by (44)
and the shear modulus G12 is given by (45). The material axes of both regions
are not aligned with the coordinate system and loading: the angles of the the
material axes and the coordinate system of the first and second region are θ and
−θ, respectively. The setting represents a “woven” composite material across the
beam horizontally. Our output of interest is the integral of the normal displacement
(u1) over the boundary Γo

O. We note our output of interest is thus “non-compliant”.

Γo
T

1

2

Γo
L Γo

R2w
Γo
O

Figure 12: The woven composite beam problem

We consider P = 3 parameters µ = [µ1, µ2, µ3] ≡ [w,E2, θ]. The parameter
domain is chosen as D = [1/6,1/12]× [1/2,2]× [−π/4, π/4].

We then apply the domain decomposition [36] and obtain Lreg = 32 subdo-
mains, note that all subdomains transformations are just simply translations due to
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N EN ηs
N

4 4.64E-02 22.66
8 1.47E-03 7.39
12 2.35E-04 9.44
16 6.69E-05 14.29
20 1.31E-05 11.41

Table 5: The woven composite beam problem: RB convergence

the “added control points” along the external (and interface) boundaries strategy
[36]. We recover the affine forms with Qa = 19, Q f = 2, and Q` = 1.

We next consider a FE approximation where the mesh contains nnode = 3569
nodes and nelem = 6607 P1 elements, which corresponds to N = 6865 degrees of
freedoms. The mesh is refined around the holes, the interfaces between the two
regions, and the clamped boundary as shown in Figure 13.

Figure 13: The woven composite beam problem: Domain composition and FE
mesh

We then apply the RB approximation. We present in Table 5 our convergence
results: the RB error bounds and effectivities as a function of N . The error bound
reported, EN = ∆

s
N (µ)/|sN (µ)| is the maximum of the relative error bound over a

random test sample Ξtest of size ntest = 200. We denote by ηs
N the average of the

effectivity ηs
N (µ) over Ξtest. We observe that our effectivity average is of order

O(5−25).
As regards computational times, a RB online evaluation µ→ (sN (µ),∆s

N (µ))
requires just tRB = 40(ms) for N = 20; while the FE solution µ→ sN (µ) requires
tFE = 7.5(s): thus our RB online evaluation is just 0.53%of the FEMcomputational
cost.
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6.6 The closed vessel problem
We consider a closed vessel under tension at both ends as shown in Figure 14.
The vessel is axial symmetric about the xo

2 axis, and symmetric about the xo
1 axis,

Figure 14: The closed vessel problem

hencewe only consider a representation “slice” by our axisymmetric formulation as
shown in Figure 15. The vessel is consists of two layered, the outer layer is of fixed
width wout = 1, while the inner layer is of width win = w. The material properties
of the inner layer and outer layer are given by (E in, ν) = (E in,0.3) and (Eout, ν) =
(1,0.3), respectively. We apply (symmetric about the xo

2 direction) Dirichlet
boundary conditions on the bottom boundary of the model Γo

B, (symmetric about
the xo

1 direction) Dirichlet boundary conditions on the left boundary of the model
Γo

L and (unit tension) non-homogeneous Neumann boundary conditions on the top
boudanry Γo

T . Our output of interest is the integral of the axial displacement (ur)
over the right boundary Γo

R. We note our output of interest is thus “non-compliant”.

We consider P = 2 parameters µ = [µ1, µ2] ≡ [w,E in]. The parameter domain
is chosen asD = [0.1,1.9]× [0.1,10].

We then apply the domain decomposition [36] and obtain Lreg = 12 subdomains
as shown in Figure 16. We recover our affine forms withQa = 47, Q f = 1, andQ` =

1. Despite the small number of parameter (and seemingly simple transformations),
Qa is large in this case. A major contribution to Qa come from the expansion of
the terms xo

1 in the effective elastic tensor [S], which appeared due to the geometric
transformation of the inner layer.
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Figure 15: The closed vessel problem

We next consider a FE approximation where the mesh contains nnode = 3737
nodes and nelem = 7285 P1 elements, which corresponds to N = 7423 degrees of
freedoms. The mesh is refined around the interfaces between the two layers.

Figure 16: The closed vessel problem: Domain composition and FE mesh

We then apply the RB approximation. We present in Table 6 convergence
results: the RB error bounds and effectivities as a function of N . The error bound
reported, EN = ∆

s
N (µ)/|sN (µ)| is the maximum of the relative error bound over a

random test sample Ξtest of size ntest = 200. We denote by ηs
N the average of the

effectivity ηs
N (µ) over Ξtest. We observe that our effectivity average is of order

O(50−120), which is quite large, however it is not surprising since our output is
“non-compliant”.

As regards computational times, a RB online evaluation µ→ (sN (µ),∆s
N (µ))

requires just tRB = 167(ms) for N = 40; while the FE solution µ→ sN (µ) requires
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N EN ηs
N

10 7.12E-02 56.01
20 1.20E-03 111.28
30 3.96E-05 49.62
40 2.55E-06 59.96
50 5.70E-07 113.86
60 5.90E-08 111.23
70 6.95E-09 77.12

Table 6: The closed vessel problem: RB convergence

tFE = 8.2(s): thus our RB online evaluation is just 2.04%of the FEMcomputational
cost.

6.7 The Von Kármán plate problem
Weconsider nowadifferent problem that can be derived from the classical elasticity
equations [13, 14]. It turns out to be nonlinear and brings with it a lot of technical
difficulties. Let us consider an elastic, bidimensional and rectangular plate Ω =
[0, l] × [0,1] in its undeformed state, subjected to a µ-parametrized external load
acting on its edge, then the Airy stress potential and the deformation from its flat
state, respectively φ and u are defined by the Von Kármán equations{

∆2u+ µuxx = [φ,u]+ f , in Ω
∆2φ = −[u,u] , in Ω

(43)

where

∆
2 := ∆∆ =

(
∂ 2

∂ x2 +
∂ 2

∂ y2

)2

,

is the biharmonic operator and

[u, φ] := ∂
2u

∂ x2
∂ 2φ

∂ y2 −2
∂ 2u
∂x∂y

∂ 2φ

∂x∂y
+
∂ 2u
∂ y2

∂ 2φ

∂ x2 ,

is the bracket of Monge-Ampére. So we have a system of two nonlinear and
parametrized equations of the fourth order with µ the parameter that measures the
compression along the sides of the plate.
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Figure 17: A rectangular bidimensional elastic plate compressed on its edges

From the mathematical point of view, we will suppose the plate is simply
supported, i.e. that holds boundary conditions

u = ∆u = 0, φ = ∆φ = 0, on ∂Ω.

In this model problem we are interested in the study of stability and uniqueness of
the solution for a given parameter. In fact due to the nonlinearity of the bracket
we obtain the so called buckling phenomena [43], that is the main feature studied
in bifurcations theory. What we seek is the critical value of µ for which the stable
(initial configuration) solution become unstable while there are two new stable and
symmetric solutions.

To detect this valuewe need a very complex algorithm thatmixes a continuation
method, a nonlinear solver and finally a full-order method to find the buckled state.
At the end for every µ ∈Dtrain (a fine discretization of the parameter domain D)
we have a loop due to the nonlinearity, for which at each iteration we have to solve
the Finite Element method applied to the weak formulation of the problem.

Here we consider P = 1 parameter µ and its domain is suitably chosen6 as
D = [30,70].

Also in this case we can simply recover the affine forms with Qa = 3. For the
rectangular plate test case with l = 2 we applied the Finite Element method, with
nnode = 441 nodes and nelem = 800 P2 elements, which corresponds to N = 6724
degrees of freedom. We stress on the fact that the linear system obtained by the
Galerkin projection has to be solved at each step of the nonlinear solver, here we
chose the classic Newton method [35].

Moreover, for a given parameter, we have to solve a FE system until Newton
method converges just to obtain one of the possible solutions of our model; keeping

6It is possible to show that the bifurcation point is related to the eigenvalue of the linearized
model [5], so we are able to set in a proper way the range of the parameter domain.
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in mind that we do not know a priori where is the bifurcation point and we have
to investigate the whole parameter domain. It is clear that despite the simple
geometry and the quite coarse mesh, the reduction strategies are fundamental in
this kind of applications.

For example, in order to plot a bifurcation diagram like the one in Figure 18,
the full order code running on a standart computer takes approximately one hour.

Figure 18: Bifurcation diagram for a square plate and different initial guess for
Newton method, on y-axis is represented the infinite norm of the solution

Once selected a specific parameter, λ = 70, we can see in Figure 19 the two
solutions that belong to the different branches of the plot reported in Figure 18.

We then appliedRBapproximation and present inTable 7 a convergence results:
the error between the truth approximation and the reduced one as a function of N .
The error reported, EN = maxµ∈D | |uN (µ) −uNRB,N (µ)| |X is the maximum of the
approximation error over a uniformly chosen test sample.

As we can see in Figure 20 e obtain very good results with a low number of
snapshots due to the strong properties of the underlying biharmonic operator.

A suitable extension for the a posteriori error estimate of the solution can
be obtained by applying Brezzi-Rappaz-Raviart (BRR) theory on the numerical
approximation of nonlinear problems [6, 7, 8, 16, 9]. However, the adaptation of
BRR theory to RB methods in bifurcating problems is not straightforward, and we
leave it for further future investigation [32].
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Figure 19: Contour plot of the two solutions belonging to the green and red
branches of the bifurcation diagram for λ = 70, respectively

N EN
1 6.61E+00
2 6.90E-01
3 7.81E-02
4 2.53E-02
5 1.88E-02
6 1.24E-02
7 9.02E-03
8 8.46E-03

Table 7: The Von Kármán plate problem : RB convergence

Figure 20: Comparison between the full order solution (left) and reduced order
one (right) for λ = 65
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As regards computational times, a RB online evaluation µ→ uNRB,N (µ) requires
just tRB = 100(ms) for N = 8; while the FE solution µ→ uN (µ) requires tFE =
8.17(s): thus our RB online evaluation is just 1.22% of the FEM computational
cost.

7 Conclusions
Wehave provided some examples of applications of reduced basismethods in linear
elasticity problems depending also on many parameters of different kind (geomet-
rical, physical, engineering) using different linear elasticity approximations, a 2D
Cartesian setting or a 3D axisymmetric one, different material models (isotropic
and orthotropic), as well as an overview on nonlinear problems. Reduced basis
methods have confirmed a very good computational performance with respect to a
classical finite element formulation, not very suitable to solve parametrized prob-
lems in the real-time and many-query contexts. We have extended and generalized
previous work [24] with the possibility to treat with more complex outputs by
introducing a dual problem [36]. Another very important aspect addressed in this
work is the certification of the errors in the reduced basis approximation by means
of a posteriori error estimators, see for example [22]. This work looks also at
more complex 3D parametrized applications (not only in the special axisymmetric
case) as quite promising problem to be solved with the same certified methodology
[12, 42].
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Appendix

8 Stress-strain matrices
In this section, we denote Ei, i = 1,3 as the Young’s moduli, νi j ; i, j = 1,2,3 as the
Poisson ratios; and G12 as the shear modulus of the material.

8.1 Isotropic cases
For both of the following cases, E = E1 = E2, and ν = ν12 = ν21.

Isotropic plane stress:

[E] = E
(1− ν2)


1 ν 0
ν 1 0
0 0 2(1+ ν)

 .
Isotropic plane strain:

[E] = E
(1+ ν)(1−2ν)


1 ν 0
ν 1 0
0 0 2(1+ ν)

 .
8.2 Orthotropic cases
Here we assume that the orthotropic material axes are aligned with the axes
used for the analysis of the structure. If the structural axes are not aligned with
the orthotropic material axes, orthotropic material rotation must be rotated by
with respect to the structural axes. Assuming the angle between the orthogonal
material axes and the structural axes is θ, the stress-strain matrix is given by
[E] = [T (θ)][Ê][T (θ)]T , where

[T (θ)] =


cos2 θ sin2 θ −2sinθ cosθ
sin2 θ cos2 θ 2sinθ cosθ

sinθ cosθ −sinθ cosθ cos2 θ − sin2 θ

 .
Orthotropic plane stress:

[Ê] = 1
(1− ν12ν21)


E1 ν12E1 0

ν21E2 E2 0
0 0 (1− ν12ν21)G12

 .
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Note here that the condition
ν12E1 = ν21E2 (44)

must be required in order to yield a symmetric [E].
Orthotropic plane strain:

[Ê] = 1
Λ


(1− ν23ν32)E1 (ν12+ ν13ν32)E1 0
(ν21+ ν23ν31)E2 (1− ν13ν31)E2 0

0 0 ΛG12

 .
Here Λ = (1− ν13ν31)(1− ν23ν32) − (ν12 + ν13ν32)(ν21 + ν23ν31). Furthermore, the
following conditions,

ν12E1 = ν21E2, ν13E1 = ν31E3, ν23E2 = ν32E3,

must be satisfied, which leads to a symmetric [E].
An reasonable good approximation for the shear modulus G12 in orthotropic

case is given by [10] as

1
G12
≈ (1+ ν21)

E1
+
(1+ ν12)

E2
. (45)
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