38 research outputs found

    Direct discovery of the inner exoplanet in the HD206893 system. Evidence for deuterium burning in a planetary-mass companion

    Full text link
    Long term precise radial velocity (RV) monitoring of the nearby star HD206893, as well as anomalies in the system proper motion, have suggested the presence of an additional, inner companion in the system. Here we describe the results of a multi-epoch search for the companion responsible for this RV drift and proper motion anomaly using the VLTI/GRAVITY instrument. Utilizing information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we report a high significance detection of the companion HD206893c over three epochs, with clear evidence for Keplerian orbital motion. Our astrometry with \sim50-100 μ\muarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.71.0+1.2^{+1.2}_{-1.0} MJup_{\rm Jup} and an orbital separation of 3.530.06+0.08^{+0.08}_{-0.06} au for HD206893c. Our fits to the orbits of both companions in the system utilize both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore derive an age of 155±15155\pm15 Myr. We find that theoretical atmospheric/evolutionary models incorporating deuterium burning for HD206893c, parameterized by cloudy atmospheres provide a good simultaneous fit to the luminosity of both HD206893B and c. In addition to utilizing long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part with Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward to identify and characterize additional directly imaged planets. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form at ice-line orbital separations of 2-4\,au.Comment: Accepted to A&

    Direct confirmation of the radial-velocity planet β Pictoris c

    Get PDF
    Context. Methods used to detect giant exoplanets can be broadly divided into two categories: indirect and direct. Indirect methods are more sensitive to planets with a small orbital period, whereas direct detection is more sensitive to planets orbiting at a large distance from their host star. This dichotomy makes it difficult to combine the two techniques on a single target at once. Aims: Simultaneous measurements made by direct and indirect techniques offer the possibility of determining the mass and luminosity of planets and a method of testing formation models. Here, we aim to show how long-baseline interferometric observations guided by radial-velocity can be used in such a way. Methods: We observed the recently-discovered giant planet β Pictoris c with GRAVITY, mounted on the Very Large Telescope Interferometer. Results: This study constitutes the first direct confirmation of a planet discovered through radial velocity. We find that the planet has a temperature of T = 1250 ± 50 K and a dynamical mass of M = 8.2 ± 0.8 M[SUB]Jup[/SUB]. At 18.5 ± 2.5 Myr, this puts β Pic c close to a `hot start' track, which is usually associated with formation via disk instability. Conversely, the planet orbits at a distance of 2.7 au, which is too close for disk instability to occur. The low apparent magnitude (M[SUB]K[/SUB] = 14.3 ± 0.1) favours a core accretion scenario. Conclusions: We suggest that this apparent contradiction is a sign of hot core accretion, for example, due to the mass of the planetary core or the existence of a high-temperature accretion shock during formation

    The mass of β Pictoris c from β Pictoris b orbital motion

    Get PDF
    Aims. We aim to demonstrate that the presence and mass of an exoplanet can now be effectively derived from the astrometry of another exoplanet. Methods. We combined previous astrometry of β Pictoris b with a new set of observations from the GRAVITY interferometer. The orbital motion of β Pictoris b is fit using Markov chain Monte Carlo simulations in Jacobi coordinates. The inner planet, β Pictoris c, was also reobserved at a separation of 96 mas, confirming the previous orbital estimations. Results. From the astrometry of planet b only, we can (i) detect the presence of β Pictoris c and (ii) constrain its mass to 10.04-3.10+4.53 MJup. If one adds the astrometry of β Pictoris c, the mass is narrowed down to 9.15-1.06+1.08 MJup. The inclusion of radial velocity measurements does not affect the orbital parameters significantly, but it does slightly decrease the mass estimate to 8.89-0.75+0.75 MJup. With a semimajor axis of 2.68 ± 0.02 au, a period of 1221 ± 15 days, and an eccentricity of 0.32 ± 0.02, the orbital parameters of β Pictoris c are now constrained as precisely as those of β Pictoris b. The orbital configuration is compatible with a high-order mean-motion resonance (7:1). The impact of the resonance on the planets' dynamics would then be negligible with respect to the secular perturbations, which might have played an important role in the eccentricity excitation of the outer planet. © 2021 S. Lacour et al

    GRAVITY K -band spectroscopy of HD 206893 B

    Get PDF
    Context. Near-infrared interferometry has become a powerful tool for studying the orbital and atmospheric parameters of substellar companions. Aims. We aim to reveal the nature of the reddest known substellar companion HD 206893 B by studying its near-infrared colors and spectral morphology and by investigating its orbital motion. Methods. We fit atmospheric models for giant planets and brown dwarfs and perform spectral retrievals with petitRADTRANS and ATMO on the observed GRAVITY, SPHERE, and GPI spectra of HD 206893 B. To recover its unusual spectral features, first and foremost its extremely red near-infrared color, we include additional extinction by high-altitude dust clouds made of enstatite grains in the atmospheric model fits. However, forsterite, corundum, and iron grains predict similar extinction curves for the grain sizes considered here. We also infer the orbital parameters of HD 206893 B by combining the ~100 μas precision astrometry from GRAVITY with data from the literature and constrain the mass and position of HD 206893 C based on the Gaia proper motion anomaly of the system. Results. The extremely red color and the very shallow 1.4 μm water absorption feature of HD 206893 B can be fit well with the adapted atmospheric models and spectral retrievals. By comparison with AMES-Cond evolutionary tracks, we find that only some atmosphericmodels predict physically plausible objects. Altogether, our analysis suggests an age of ~ 3-300 Myr and a mass of ~ 5-30 MJup for HD 206893 B, which is consistent with previous estimates but extends the parameter space to younger and lower-mass objects. The GRAVITY astrometry points to an eccentric orbit (e = 0.29-0.11+0.06) with a mutual inclination of <34.4 deg with respectto the debris disk of the system. Conclusions. While HD 206893 B could in principle be a planetary-mass companion, this possibility hinges on the unknown influence of the inner companion on the mass estimate of 10-4+5 MJup from radial velocity and Gaia as well as a relatively small but significant Argus moving group membership probability of ~ 61%. However, we find that if the mass of HD 206893 B is <30 MJup, then the inner companion HD 206893 C should have a mass between ~ 8-15 MJup. Finally, further spectroscopic or photometric observations at higher signal-to-noise and longer wavelengths are required to learn more about the composition and dust cloud properties of HD 206893 B. © ESO 2021

    Constraining the nature of the PDS 70 protoplanets with VLTI/GRAVITY

    Get PDF
    We present K-band interferometric observations of the PDS 70 protoplanets along with their host star using VLTI/GRAVITY. We obtained K-band spectra and 100 μ\muas precision astrometry of both PDS 70 b and c in two epochs, as well as spatially resolving the hot inner disk around the star. Rejecting unstable orbits, we found a nonzero eccentricity for PDS 70 b of 0.17±0.060.17 \pm 0.06, a near-circular orbit for PDS 70 c, and an orbital configuration that is consistent with the planets migrating into a 2:1 mean motion resonance. Enforcing dynamical stability, we obtained a 95% upper limit on the mass of PDS 70 b of 10 MJupM_\textrm{Jup}, while the mass of PDS 70 c was unconstrained. The GRAVITY K-band spectra rules out pure blackbody models for the photospheres of both planets. Instead, the models with the most support from the data are planetary atmospheres that are dusty, but the nature of the dust is unclear. Any circumplanetary dust around these planets is not well constrained by the planets' 1-5 μ\mum spectral energy distributions (SEDs) and requires longer wavelength data to probe with SED analysis. However with VLTI/GRAVITY, we made the first observations of a circumplanetary environment with sub-au spatial resolution, placing an upper limit of 0.3~au on the size of a bright disk around PDS 70 b

    Critical sites: a semantic approach to protein sequences. Application to the HIV-1 envelope molecule

    No full text
    We have designed two software systems allowing the study of proteins through a comparison to those stored in data banks. The first one, "Automat", locates in a systematic manner all identities shared by a given protein and the proteins in a data bank. The second, "Critic" enables the selection of specific segments in a given molecule by comparing them with those gathered in a data bank. These sites were termed "critical" since they mostly correspond to functional sites (active sites) of the well-known proteins which were studied with the aid of this program (somatostatin, insulin. IL2, etc). Automat allowed us to reveal homologies between HIV-1 and the CD4, which have remained unsolved until now. These similitudes proved to be critical sites (according to Critic). The putative involvement of these sites in the physiopathological processes as induced by HIV-1 are worth considering since the results of our experiments are consistent with this assumption. HIV / automat / critic / protein. © 1992.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    HIV-1-induced immune suppression may result from autoimmune disorders including anti-SLWDQ autoantibodies

    No full text
    We have previously unravelled the striking SLWDQ pentapeptide identity between HIV-1 env gp120 and the CD4 molecule. We show here that this pentapeptide is required for the functioning of the co-stimulatory MHC-CD4 signal in T4-cell activation since it suppresses antigen-induced T-cell proliferation. Moreover, concerning the MHC class II counterpart, the LNGQEETGVVSTN sequence which strongly inhibits T-cell immune activation is likely to be part of the functional site of the molecule. Interestingly the MHC/gp120 homology described by Young overlaps this MHC region. We further report that the gp120 SLWDQ peptide triggers an immune reaction which is both humoral (anti-SLWDQ antibodies) and cellular (CTLs against autologous targets carrying the pentapeptide) in HIVA infected individuals. Finally, anti-SLWDQ antibodies from patients sera purified by column chromatography strongly inhibit antigen-induced immune T-cell activation. This result led us to postulate that these antibodies found in high titers in HIVA infected individuals could contribute to set up the progressive systemic immune T-cell suppression characterizing AIDS. © 1993.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore