9 research outputs found

    Reversal of gulf stream circulation in a vertically vibrated triangular fluidized bed

    Get PDF
    Vibrated fluidized beds are a process intensification technique consisting in introducing vibratory kinetic energy in a fluidized bed (1). In this work we assess experimentally the effect of vibration on the gulf-stream circulation pattern of particles in a fluidized bed that is of triangular shape. The bed has 0.206 m span and 0.01 m thickness. The base of the bed is composed of two inclined walls, each one forming an angle of 45º with the horizontal. Air was injected through the inclined bed walls to fluidize the bed (see Figure 1a). This gas injection, together with vibration, can make the dynamics of this bed different to that found in a spouted fluidized bed (2). The bed is filled with ballotini particles with a mean diameter of 1.15 mm up to the top of the inclined walls. The bed vessel is made of antistatic PMMA to allow optical access with a high-speed camera. The bed was mounted on an electrodynamic shaker which produces the vibration. A high speed camera is used to record the motion of particles. The particle velocity was obtained via Particle Image Velocimetry (PIV). As a function of vibration amplitude and frequency, we observe several circulation patterns when the fluidization velocity is just below and above the minimum fluidization velocity. Noticeably, for zero gas velocity, particles ascend close to the side walls descend in the center of the bed. By injecting fluidization gas, the circulation pattern of the bed could be reversed (i.e. particles descending near the side walls ascend in the center of the bed) for certain conditions. For example, reversal of the gulf stream circulation of particles appeared in the triangular bed for gas superficial velocities higher than the minimum fluidization velocity and sufficiently high values of the vibration strength. This phenomenon is illustrated in Figure 1b in which, for the same vibrating conditions, the injection of gas superficial velocity through the walls reverses the gulf stream motion of particles in the bed. REFERENCES R. Gupta, A.S. Mujumdar, Hydrodynamic of vibrated fluidized bed, Can. J. Chem. Eng., 58:332-338, 1980. Vinayak S. Sutkar, Niels G. Deen, J.A.M. Kuipers, Spout fluidized beds: Recent advances in experimental and numerical studies, Chem. Eng. Sci., 86:124:136, 2013. Please click Additional Files below to see the full abstract

    Segregation of equal-sized particles of different densities in a vertically vibrated fluidized bed

    Get PDF
    Many operations in the chemical and energy-conversion industries rely on the fluidization of heterogeneous materials. During fluidization, particles of different densities can segregate, even if they are of the same size. Segregation is typically an undesired phenomenon, especially in fluidized bed reactors (1). Thus, an understanding of segregation on a fundamental level is paramount to identify effective measures to control it. One approach to control segregation could be the vibration of the bed vessel. However, there is very little literature available concerning the effect of vibration on density-induced segregation dynamics (2). Thus, this work studies the influence of vibration on density-induced segregation dynamics in a gas fluidized bed. Experiments were carried out in a pseudo-2D bed of 0.2 m width, 0.5 m height and 0.01 m thickness. The bed was filled with black, ballotini spheres (density 2500 kg/m3) mixed with heavier, white, ceramic particles (density 4100 kg/m3 and 6000 kg/m3). All particles have an average diameter of 1.1 mm. The bed was fluidized by air and vibrated by an electrodynamic shaker. High-speed images were recorded through the transparent front wall of the bed. Digital Image Analysis (DIA) was used to characterize the rate and extent of particle mixing with time (see Figure 1). At the start of the experiments the particles were mixed. The results obtained indicate that both the vibration strength and the gas velocity have an important effect on both the rate and the maximum degree of segregation of particles. We observed that particles become segregated for fluidization velocities greater than the minimum fluidization velocity of the denser particles. Adding vertical vibration to this system tended to enhance density-induced segregation. Interestingly, we found that, for sufficiently high vibration strengths, the degree of segregation decreased with vibration. These results indicate that by a judicious choice of the vibration strength and the fluidization velocity density-induced segregation can be controlled. REFERENCES W-C. Yang, Handbook of fluidization and fluid-particle systems, CRC Press, 2003. L. Sun, F. Zhao, Q. Zhang, D. Li, H. Lu, Numerical simulation of particle segregation in vibration fluidized bed, Chem. Eng. Technol., 37(12):2109-2115, 2014. Please click Additional Files below to see the full abstract

    Numerical calculation of the Lorentz force detuning and the pressure sensitivity for the HL-LHC crab cavity

    No full text
    Crab cavities are fundamental components of the LHC upgrade in the framework of the HL-LHC project. These Radio Frequency cavities, operated at the appropriate frequency, ‘tilt’ the proton bunches to increase the luminosity at the collision points IP1 (ATLAS) and IP5 (CMS). During operation, the walls of the cavities are deformed due to the loading conditions. This deformation changes the electro-magnetic field inside the cavity and thus its RF frequency. Two different superconducting crab cavities have been developed: RF Dipole (RFD) and Double Quarter Wave (DQW). In the present study, the numerical evaluation of the Lorentz Force Detuning (LFD) and the Pressure Sensitivity (PS) of the DQW cavity, using COMSOL Multiphysics, is presented. The LFD analyses the change in fundamental frequency of the cavity due to the electro-magnetic forces acting on its walls, while the PS investigates the frequency shift when the cavity is subjected to pressure fluctuations of the Helium bath. Finally, a comparison is presented with the results measured during the cold test of the manufactured cavities

    Beam impact tests of a prototype target for the Beam Dump Facility at CERN: experimental setup and preliminary analysis of the online results

    No full text
    The Beam Dump Facility (BDF) is a project for a new facility at CERN dedicated to high intensity beam dump and fixed target experiments. Currently in its design phase, the first aim of the facility is to search for Light Dark Matter and Hidden Sector models with the Search for Hidden Particles (SHiP) experiment. At the core of the facility sits a dense target/dump, whose function is to absorb safely the 400 GeV/c Super Proton Synchrotron (SPS) beam and to maximize the production of charm and beauty mesons. An average power of 300 kW will be deposited on the target, which will be subjected to unprecedented conditions in terms of temperature, structural loads and irradiation. In order to provide a representative validation of the target design, a prototype target has been designed, manufactured and tested under the SPS fixed-target proton beam during 2018, up to an average beam power of 50 kW, corresponding to 350 kJ per pulse. The present contribution details the target prototype design and experimental setup, as well as a first evaluation of the measurements performed during beam irradiation. The analysis of the collected data suggests that a representative reproduction of the operational conditions of the Beam Dump Facility target was achieved during the prototype tests, which will be complemented by a Post Irradiation Examination campaign during 2020.The beam dump facility (BDF) is a project for a new facility at CERN dedicated to high intensity beam dump and fixed target experiments. Currently in its design phase, the first aim of the facility is to search for light dark matter and hidden sector models with the Search for Hidden Particles (SHiP) experiment. At the core of the facility sits a dense target/dump, whose function is to absorb safely the 400  GeV/c Super Proton Synchrotron (SPS) beam and to maximize the production of charm and beauty mesons. An average power of 300 kW will be deposited on the target, which will be subjected to unprecedented conditions in terms of temperature, structural loads and irradiation. In order to provide a representative validation of the target design, a prototype target has been designed, manufactured, and tested under the SPS fixed-target proton beam during 2018, up to an average beam power of 50 kW, corresponding to 350 kJ per pulse. The present contribution details the target prototype design and experimental setup, as well as a first evaluation of the measurements performed during beam irradiation. The analysis of the collected data suggests that a representative reproduction of the operational conditions of the beam dump facility target was achieved during the prototype tests, which will be complemented by a postirradiation examination campaign during 2020
    corecore