376 research outputs found

    Comparison of endometrial polyp recurrence in fertile women after office hysteroscopic endometrial polypectomy using two widely spread techniques

    Get PDF
    Aim: To compare the recurrence of benign endometrial polyps after office hysteroscopic polypectomy performed with a bipolar electrode (BE) or a small diameter hysteroscopic tissue removal system (HTRs). Methods: From July 2018 to December 2019 we evaluated the charts of 114 asymptomatic fertile women who underwent office hysteroscopic polypectomy, 1 year before, for a single large benign endometrial polyp (size between 10 and 20 mm) using a 4 mm continuous flow hysteroscope with a BE or a 5 mm HTRs. Patients, divided into two groups according to surgical procedure, each performed exclusively by one expert gynecologist, were scheduled for a 12-month postoperative transvaginal sonography to evaluate the recurrence of endometrial polyps. Results: Forty-eight women of the BE group and 42 of the HTRs group were considered for the 1-year transvaginal sonography follow-up. Five polyps were identified in the BE group and three in the HTRs group (5/48 vs 3/42, P = n.s.). All polyps were removed hysteroscopically (in three out of five and in two out of three cases, respectively, in the same places of the previous polypectomy) and evaluated as ‘benign’ by the pathologist. Conclusion: Office hysteroscopic endometrial polypectomy with small HTRs compared to BE revealed at a 1-year follow-up no difference in terms of complete removal and recurrence of polyps. HTRs polypectomy resulted in less pain and significantly quicker time of procedure compared to BE. This data should be kept in mind for patient comfort any time hysteroscopic polypectomy is planned in an office setting

    An alternative approach to regularity for the Navier-Stokes equations in critical spaces

    Get PDF
    In this paper we present an alternative viewpoint on recent studies of regularity of solutions to the Navier-Stokes equations in critical spaces. In particular, we prove that mild solutions which remain bounded in the space H˙1/2\dot H^{1/2} do not become singular in finite time, a result which was proved in a more general setting by L. Escauriaza, G. Seregin and V. Sverak using a different approach. We use the method of "concentration-compactness" + "rigidity theorem" which was recently developed by C. Kenig and F. Merle to treat critical dispersive equations. To the authors' knowledge, this is the first instance in which this method has been applied to a parabolic equation. We remark that we have restricted our attention to a special case due only to a technical restriction, and plan to return to the general case (the L3L^3 setting) in a future publication.Comment: 41 page

    Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product

    Get PDF
    Background: A growing number of clinical trials have shown that regulatory T (Treg) cell transfer may have a favorable effect on the maintenance of self-tolerance and immune homeostasis in different conditions such as graft-versus-host disease (GvHD), solid organ transplantation, type 1 diabetes, and others. In this context, the availability of a robust manufacturing protocol that is able to produce a sufficient number of functional Treg cells represents a fundamental prerequisite for the success of a cell therapy clinical protocol. However, extended workflow guidelines for nonprofit manufacturers are currently lacking. Despite the fact that different successful manufacturing procedures and cell products with excellent safety profiles have been reported from early clinical trials, the selection and expansion protocols for Treg cells vary a lot. The objective of this study was to validate a Good Manufacturing Practice (GMP)-compliant protocol for the production of Treg cells that approaches the whole process with a risk-management methodology, from process design to completion of final product development. High emphasis was given to the description of the quality control (QC) methodologies used for the in-process and release tests (sterility, endotoxin test, mycoplasma, and immunophenotype). Results: The GMP-compliant protocol defined in this work allows at least 4.11 7 109 Treg cells to be obtained with an average purity of 95.75 \ub1 4.38% and can be used in different clinical settings to exploit Treg cell immunomodulatory function. Conclusions: These results could be of great use for facilities implementing GMP-compliant cell therapy protocols of these cells for different conditions aimed at restoring the Treg cell number and function, which may slow the progression of certain diseases

    Selected 'Starter kit' energy system modelling data for selected countries in Africa, East Asia, and South America (#CCG, 2021)

    Get PDF
    Energy system modeling can be used to develop internally-consistent quantified scenarios. These provide key insights needed to mobilise finance, understand market development, infrastructure deployment and the associated role of institutions, and generally support improved policymaking. However, access to data is often a barrier to starting energy system modeling, especially in developing countries, thereby causing delays to decision making. Therefore, this article provides data that can be used to create a simple zero-order energy system model for a range of developing countries in Africa, East Asia, and South America, which can act as a starting point for further model development and scenario analysis. The data are collected entirely from publicly available and accessible sources, including the websites and databases of international organisations, journal articles, and existing modeling studies. This means that the datasets can be easily updated based on the latest available information or more detailed and accurate local data. As an example, these data were also used to calibrate a simple energy system model for Kenya using the Open Source Energy Modeling System (OSeMOSYS) and three stylized scenarios (Fossil Future, Least Cost and Net Zero by 2050) for 2020–2050. The assumptions used and the results of these scenarios are presented in the appendix as an illustrative example of what can be done with these data. This simple model can be adapted and further developed by in-country analysts and academics, providing a platform for future work

    Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

    No full text
    Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based detection techniques. Metal induced fluorescence enhancement offers the possibility of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2 orders of magnitude is obtained by the nanoscale control of the Ag nanostructure dimensions and interparticle distance. These Ag nanostructures also enhanced fluorescence from a dye with very high quantum yield (7.8 fold for Alexa Fluor 488, quantum efficiency (Qy) = 0.92). A combination of greatly enhanced excitation and an increased radiative decay rate, leading to an associated enhancement of the quantum efficiency leads to the large enhancement. These results show the potential of Ag nanostructures as metal induced fluorescence enhancement (MIFE) substrates for dyes in the NIR “biological window” as well as the visible region. Ag nanostructured arrays fabricated by colloidal lithography thus show great potential for NIR dye-based biosensing applications

    RNAcentral 2021: secondary structure integration, improved sequence search and new member databases

    Get PDF
    RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences that provides a single access point to 44 RNA resources and >18 million ncRNA sequences from a wide range of organisms and RNA types. RNAcentral now also includes secondary (2D) structure information for >13 million sequences, making RNAcentral the world’s largest RNA 2D structure database. The 2D diagrams are displayed using R2DT, a new 2D structure visualization method that uses consistent, reproducible and recognizable layouts for related RNAs. The sequence similarity search has been updated with a faster interface featuring facets for filtering search results by RNA type, organism, source database or any keyword. This sequence search tool is available as a reusable web component, and has been integrated into several RNAcentral member databases, including Rfam, miRBase and snoDB. To allow for a more fine-grained assignment of RNA types and subtypes, all RNAcentral sequences have been annotated with Sequence Ontology terms. The RNAcentral database continues to grow and provide a central data resource for the RNA community. RNAcentral is freely available at https://rnacentral.org

    The Inviscid Limit and Boundary Layers for Navier-Stokes Flows

    Full text link
    The validity of the vanishing viscosity limit, that is, whether solutions of the Navier-Stokes equations modeling viscous incompressible flows converge to solutions of the Euler equations modeling inviscid incompressible flows as viscosity approaches zero, is one of the most fundamental issues in mathematical fluid mechanics. The problem is classified into two categories: the case when the physical boundary is absent, and the case when the physical boundary is present and the effect of the boundary layer becomes significant. The aim of this article is to review recent progress on the mathematical analysis of this problem in each category.Comment: To appear in "Handbook of Mathematical Analysis in Mechanics of Viscous Fluids", Y. Giga and A. Novotn\'y Ed., Springer. The final publication is available at http://www.springerlink.co

    Five decades of terrestrial and freshwater research at Ny-Ålesund, Svalbard

    Get PDF
    For more than five decades, research has been conducted at Ny-Ålesund, in Svalbard, Norway, to understand the structure and functioning of High-Arctic ecosystems and the profound impacts on them of environmental change. Terrestrial, freshwater, glacial and marine ecosystems are accessible year-round from Ny-Ålesund, providing unique opportunities for interdisciplinary observational and experimental studies along physical, chemical, hydrological and climatic gradients. Here, we synthesize terrestrial and freshwater research at Ny-Ålesund and review current knowledge of biodiversity patterns, species population dynamics and interactions, ecosystem processes, biogeochemical cycles and anthropogenic impacts. There is now strong evidence of past and ongoing biotic changes caused by climate change, including negative effects on populations of many taxa and impacts of rain-on-snow events across multiple trophic levels. While species-level characteristics and responses are well understood for macro-organisms, major knowledge gaps exist for microbes, invertebrates and ecosystem-level processes. In order to fill current knowledge gaps, we recommend (1) maintaining monitoring efforts, while establishing a long-term ecosystem-based monitoring programme; (2) gaining a mechanistic understanding of environmental change impacts on processes and linkages in food webs; (3) identifying trophic interactions and cascades across ecosystems; and (4) integrating long-term data on microbial, invertebrate and freshwater communities, along with measurements of carbon and nutrient fluxes among soils, atmosphere, freshwaters and the marine environment. The synthesis here shows that the Ny-Ålesund study system has the characteristics needed to fill these gaps in knowledge, thereby enhancing our understanding of High-Arctic ecosystems and their responses to environmental variability and change

    The Ribosomal Database Project: improved alignments and new tools for rRNA analysis

    Get PDF
    The Ribosomal Database Project (RDP) provides researchers with quality-controlled bacterial and archaeal small subunit rRNA alignments and analysis tools. An improved alignment strategy uses the Infernal secondary structure aware aligner to provide a more consistent higher quality alignment and faster processing of user sequences. Substantial new analysis features include a new Pyrosequencing Pipeline that provides tools to support analysis of ultra high-throughput rRNA sequencing data. This pipeline offers a collection of tools that automate the data processing and simplify the computationally intensive analysis of large sequencing libraries. In addition, a new Taxomatic visualization tool allows rapid visualization of taxonomic inconsistencies and suggests corrections, and a new class Assignment Generator provides instructors with a lesson plan and individualized teaching materials. Details about RDP data and analytical functions can be found at http://rdp.cme.msu.edu/

    Weak and strong solutions of equations of compressible magnetohydrodynamics

    Get PDF
    International audienceThis article proposes a review of the analysis of the system of magnetohydrodynamics (MHD). First, we give an account of the modelling asumptions. Then, the results of existence of weak solutions, using the notion of renormalized solutions. Then, existence of strong solutions in the neighbourhood of equilibrium states is reviewed, in particular with the method of Kawashima and Shizuta. Finally, the special case of dimension one is highlighted : the use of Lagrangian coordinates gives a simpler system, which is solved by standard techniques
    corecore