62 research outputs found

    Acute hepatitis in three patients with systemic juvenile idiopathic arthritis taking interleukin-1 receptor antagonist

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>We investigated the etiology of acute hepatitis in three children with systemic Juvenile Idiopathic Arthritis (sJIA) taking Interleukin-1 receptor antagonist (IL1RA).</p> <p>Methods</p> <p>Laboratory and clinical data for three children with sJIA diagnosed at ages 13 months to 8 years who developed acute hepatitis during treatment with IL1RA were reviewed for evidence of sJIA flare, infection, macrophage activation syndrome (MAS), malignancy, and drug reaction.</p> <p>Results</p> <p>In all patients, hepatitis persisted despite cessation of known hepatotoxic drugs and in absence of known infectious triggers, until discontinuation of IL1RA. Liver biopsies had mixed inflammatory infiltrates with associated hepatocellular injury suggestive of an exogenous trigger. At the time of hepatitis, laboratory data and liver biopsies were not characteristic of MAS. In two patients, transaminitis resolved within one week of discontinuing IL1RA, the third improved dramatically in one month.</p> <p>Conclusions</p> <p>Although sJIA symptoms improved significantly on IL1RA, it appeared that IL1RA contributed to the development of acute hepatitis. Hepatitis possibly occurred as a result of an altered immune response to a typical childhood infection while on IL1RA. Alternatively, hepatitis could have represented an atypical presentation of MAS in patients with sJIA taking IL1RA. Further investigation is warranted to determine how anti-IL1 therapies alter immune responsiveness to exogenous triggers in patients with immune dysfunction such as sJIA. Our patients suggest that close monitoring for hepatic and other toxicities is indicated when treating with IL1RA.</p

    Relationship between emergency presentation, systemic inflammatory response, and cancer-specific survival in patients undergoing potentially curative surgery for colon cancer

    Get PDF
    Background Emergency presentation is recognized to be associated with poorer cancer-specific survival following curative resection for colorectal cancer. The present study examined the hypothesis that an enhanced systemic inflammatory response, prior to surgery, might explain the impact of emergency presentation on survival. Methods In all, 188 patients undergoing potentially curative resection for colorectal cancer were studied. Of these, 55 (29&#37;) presented as emergencies. The systemic inflammatory response was assessed using the Glasgow Prognostic Score (mGPS), which is the combination of an elevated C-reactive protein (&gt;10 mg/L) and hypoalbuminemia (&lt;35 g/L). Results In the emergency group, tumor stage was greater (P &lt; 0.01), more patients received adjuvant therapy (P &lt; 0.01) more patients had an elevated mGPS (P &lt; 0.01), and more patients died of their disease (P &lt; 0.05). The minimum follow-up was 12 months; the median follow-up of the survivors was 48 months. Emergency presentation was associated with poorer 3-year cancer-specific survival in those patients aged 65 to 74 years (P &lt; 0.01), in both males and females (P &lt; 0.05), in the deprived (P &lt; 0.01), in patients with tumor-node-metastasis (TNM) stage II disease (P &lt; 0.01), in those who received no adjuvant therapy (P &lt; 0.01), and in the mGPS 0 and 1 groups (P &lt; 0.05) groups. On multivariate survival analysis of patients undergoing potentially curative surgery for TNM stage II colon cancer, emergency presentation (P &lt; 0.05) and mGPS (P &lt; 0.05) were independently associated with cancer-specific survival. Conclusions These results suggest that emergency presentation and the presence of systemic inflammatory response prior to surgery are linked and account for poorer cancer-specific survival in patients undergoing potentially curative surgery for colon cancer. Both emergency presentation and an elevated mGPS should be taken into account when assessing the likely outcome of these patients

    Therapeutic approaches to pediatric COVID-19: an online survey of pediatric rheumatologists

    Get PDF
    Data on therapy of COVID-19 in immunocompetent and immunosuppressed children are scarce. We aimed to explore management strategies of pediatric rheumatologists. All subscribers to international Pediatric Rheumatology Bulletin Board were invited to take part in an online survey on therapeutic approaches to COVID-19 in healthy children and children with autoimmune/inflammatory diseases (AID). Off-label therapies would be considered by 90.3% of the 93 participating respondents. In stable patients with COVID-19 on oxygen supply (stage I), use of remdesivir (48.3%), azithromycin (26.6%), oral corticosteroids (25.4%) and/or hydroxychloroquine (21.9%) would be recommended. In case of early signs of 'cytokine storm' (stage II) or in critically ill patients (stage III) (a) anakinra (79.5% stage II; 83.6% stage III) or tocilizumab (58.0% and 87.0%, respectively); (b) corticosteroids (oral 67.2% stage II, intravenously 81.7% stage III); (c) intravenous immunoglobulins (both stages 56.5%); or (d) remdesivir (both stages 46.7%) were considered. In AID, &amp;gt; 94.2% of the respondents would not support a preventive adaptation of the immunomodulating therapy. In case of mild COVID-19, more than 50% of the respondents would continue pre-existing treatment with immunoglobulins (100%), hydroxychloroquine (94.2%), anakinra (79.2%) or canakinumab (72.5%), or tocilizumab (69.8%). Long-term corticosteroids would be reduced by 26.9% (&amp;lt; = 2 mg/kg/d) and 50.0% (&amp;gt; 2 mg/kg/day), respectively, with only 5.8% of respondents voting to discontinue the therapy. Conversely, more than 75% of respondents would refrain from administering cyclophosphamide and anti-CD20-antibodies. As evidence on management of pediatric COVID-19 is incomplete, continuous and critical expert opinion and knowledge exchange is helpful

    Autoinflammatory mutation in NLRC4 reveals a leucine-rich repeat (LRR)-LRR oligomerization interface

    Get PDF
    Background Monogenic autoinflammatory disorders are characterized by dysregulation of the innate immune system, for example by gain-of-function mutations in inflammasome-forming proteins, such as NOD-like receptor family CARD-containing 4 protein (NLRC4). Objective Here we investigate the mechanism by which a novel mutation in the leucine-rich repeat (LRR) domain of NLRC4 (c.G1965C, p.W655C) contributes to autoinflammatory disease. Methods: We studied 2 unrelated patients with early-onset macrophage activation syndrome harboring the same de novo mutation in NLRC4. In vitro inflammasome complex formation was quantified by using flow cytometric analysis of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 techniques and lentiviral transduction were used to generate THP-1 cells with either wild-type or mutant NLRC4 cDNA. Cell death and release of IL-1β/IL-18 were quantified by using flow cytometry and ELISA, respectively. Results The p.W655C NLRC4 mutation caused increased ASC speck formation, caspase-1–dependent cell death, and IL-1β/IL-18 production. ASC contributed to p.W655C NLRC4–mediated cytokine release but not cell death. Mutation of p.W655 activated the NLRC4 inflammasome complex by engaging with 2 interfaces on the opposing LRR domain of the oligomer. One key set of residues (p.D1010, p.D1011, p.L1012, and p.I1015) participated in LRR-LRR oligomerization when triggered by mutant NLRC4 or type 3 secretion system effector (PrgI) stimulation of the NLRC4 inflammasome complex. Conclusion This is the first report of a mutation in the LRR domain of NLRC4 causing autoinflammatory disease. c.G1965C/p.W655C NLRC4 increased inflammasome activation in vitro. Data generated from various NLRC4 mutations provides evidence that the LRR-LRR interface has an important and previously unrecognized role in oligomerization of the NLRC4 inflammasome complex

    An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome

    Get PDF
    Inflammasomes are innate immune sensors that respond to pathogen and damage-associated signals with caspase-1 activation, IL-1β and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the Cryopyrin Associated Periodic Syndromes (CAPS) and trigger spontaneous inflammasome activation and IL-1β oversecretion, led to successful treatment with IL-1 blocking agents1. Herein, we report a de novo missense mutation, c.1009A>T, p.Thr337Ser, in the nucleotide-binding domain of inflammasome component NLRC4 (IPAF/CARD12) that causes early-onset recurrent fever flares and Macrophage Activation Syndrome (MAS). Functional analyses demonstrated spontaneous inflammasome formation and production of the inflammasome-dependent cytokines IL-1β and IL-18, the latter exceeding levels in CAPS. The NLRC4 mutation caused constitutive caspase-1 cleavage in transduced cells and increased production of IL-18 by both patient and NLRC4 mutant macrophages. Thus, we describe a novel monoallelic inflammasome defect that expands the monogenic autoinflammatory disease spectrum to include MAS and suggests novel targets for therapy

    Screening of healthcare workers for SARS-CoV-2 highlights the role of asymptomatic carriage in COVID-19 transmission

    Get PDF
    Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3-week period (April 2020), 1,032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID-19) &gt;7 days prior to testing, most self-isolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B·1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff

    Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond.

    Get PDF
    Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of ‘self-eating’ where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis

    Efficacy and safety of baricitinib or ravulizumab in adult patients with severe COVID-19 (TACTIC-R): a randomised, parallel-arm, open-label, phase 4 trial

    Get PDF
    Background From early in the COVID-19 pandemic, evidence suggested a role for cytokine dysregulation and complement activation in severe disease. In the TACTIC-R trial, we evaluated the efficacy and safety of baricitinib, an inhibitor of Janus kinase 1 (JAK1) and JAK2, and ravulizumab, a monoclonal inhibitor of complement C5 activation, as an adjunct to standard of care for the treatment of adult patients hospitalised with COVID-19. Methods TACTIC-R was a phase 4, randomised, parallel-arm, open-label platform trial that was undertaken in the UK with urgent public health designation to assess the potential of repurposing immunosuppressants for the treatment of severe COVID-19, stratified by a risk score. Adult participants (aged ≥18 years) were enrolled from 22 hospitals across the UK. Patients with a risk score indicating a 40% risk of admission to an intensive care unit or death were randomly assigned 1:1:1 to standard of care alone, standard of care with baricitinib, or standard of care with ravulizumab. The composite primary outcome was the time from randomisation to incidence (up to and including day 14) of the first event of death, invasive mechanical ventilation, extracorporeal membrane oxygenation, cardiovascular organ support, or renal failure. The primary interim analysis was triggered when 125 patient datasets were available up to day 14 in each study group and we included in the analysis all participants who were randomly assigned. The trial was registered on ClinicalTrials.gov (NCT04390464). Findings Between May 8, 2020, and May 7, 2021, 417 participants were recruited and randomly assigned to standard of care alone (145 patients), baricitinib (137 patients), or ravulizumab (135 patients). Only 54 (39%) of 137 patients in the baricitinib group received the maximum 14-day course, whereas 132 (98%) of 135 patients in the ravulizumab group received the intended dose. The trial was stopped after the primary interim analysis on grounds of futility. The estimated hazard ratio (HR) for reaching the composite primary endpoint was 1·11 (95% CI 0·62–1·99) for patients on baricitinib compared with standard of care alone, and 1·53 (0·88–2·67) for ravulizumab compared with standard of care alone. 45 serious adverse events (21 deaths) were reported in the standard-of-care group, 57 (24 deaths) in the baricitinib group, and 60 (18 deaths) in the ravulizumab group. Interpretation Neither baricitinib nor ravulizumab, as administered in this study, was effective in reducing disease severity in patients selected for severe COVID-19. Safety was similar between treatments and standard of care. The short period of dosing with baricitinib might explain the discrepancy between our findings and those of other trials. The therapeutic potential of targeting complement C5 activation product C5a, rather than the cleavage of C5, warrants further evaluation
    • …
    corecore