79 research outputs found

    Inter-domain networking innovation on steroids: Empowering IXPs with SDN capabilities

    Get PDF
    While innovation in inter-domain routing has remained stagnant for over a decade, Internet Exchange Points (IXPs) are consolidating their role as economically advantageous interconnection points for reducing path latencies and exchanging ever increasing amounts of traffic. As such, IXPs appear as a natural place to foster network innovation and assess the benefits of Software-Defined Networking (SDN), a recent technological trend that has already boosted innovation within data-center networks. In this paper, we give a comprehensive overview of use cases for SDN at IXPs, which leverage the superior vantage point of an IXP to introduce advanced features like load-balancing and DDoS mitigation. We discuss the benefits of SDN solutions by analyzing real-world data from one of the largest IXPs. We also leverage insights into IXP operations to not only shape benefits for members but also for operators.This research is (in part) supported by European Union’s Horizon 2020 research and innovation programme under the ENDEAVOUR project (grant agreement 644960).This is the author accepted manuscript. The final version is available from IEEE via https://doi.org/ 10.1109/MCOM.2016.758827

    Validation of a microarrays protocol for detection and genotyping isolates of Plum pox virus

    Get PDF
    A genomic strategy for PPV identification has been recently developed (Pasquini et al., 2008). The method is based on using a 70-mer oligonucleotide DNA microarray chip capable of simultaneously detecting and genotyping PPV strains. Universal and specific probes have been identified and used with a sensitive protocol of hybridization using an indirect fluorescent labelling of cDNA product with cyanine able to enhance the sensitivity of the virus detection avoiding the use of the PCR amplification step. In order to evaluate the protocol fitness for diagnostic use, about 30 samples belonging to a PPV isolates collection, including M, D, EA and C strains, have been used for its validation, that was determined, estimating the performance criteria that include the following parameters: diagnostic sensitivity (D-SN), diagnostic specificity (D-SP) and diagnostic accuracy (D-AC). Keywords: oligonucleotides chip, PPV, sensitivity, specificity, accuracy, performance criteri

    Correction to: Human behavior and Homo-mammal interactions at the first European peopling: new evidence from the Pirro Nord site (Apricena, Southern Italy)

    Get PDF
    In the original publication of this article, one of the author names was incorrectly captured. The first name should be Razika, then family name should be Chelli–Cheheb

    Role of interferon lambda 4 and ALT levels in optimising treatment of HCV for patients with low-stage fibrosis

    Get PDF
    The use of new anti-HCV drugs is currently limited by high costs and dual therapy; pegylated interferon and ribavirin (peg-IFN+RBV) still represents the only affordable treatment in patients with low-stage fibrosis. We evaluated the role of Interferon lambda4 (IFNL4) polymorphisms and its combination with on-treatment alanine transaminase (ALT) modification in predicting sustained virological response (SVR) in HCV genotype 1 and 4 patients with low-stage fibrosis. We retrospectively analysed 124 patients with Metavir ≤F2, who received dual therapy at our centre. Genotyping for IFNL4 polymorphisms was assessed at baseline, as well as ALT levels (baseline and week 2, 4, 12 and 24 of therapy). Thirty patients (24%) were TT/TT, 74 (60%) TT/DG and 20 (16%) DG/DG. The SVR rate was significantly higher in TT/TT genotype compare to TT/DG and DG/DG (97% vs. 53% and 50%, respectively, p=0.001). Patients that achieved a 60% reduction of ALT baseline value after 4 weeks of therapy had a significantly higher SVR rate (94% vs. 52%, p<0.001). Factors significantly associated with SVR were TT/TT genotype (p=0.029), RVR (p=0.019) and 60% ALT reduction at 4 week of therapy (p=0.005). The absence of both TT/TT genotype and 60% ALT reduction were negative predictors of SVR (p<0.001). In conclusion, the combined use of IFNL4 polymorphisms and ALT reduction at 4 week of treatment is able to optimize candidates’ selection for peg-IFN+RBV, discriminating those that could still benefit from dual therapy from the ones that need the new regimen

    Modelling Stochastic and Deterministic Behaviours in Virus Infection Dynamics

    Get PDF
    Many human infections with viruses such as human immunodeficiency virus type 1 (HIV--1) are characterized by low numbers of founder viruses for which the random effects and discrete nature of populations have a strong effect on the dynamics, e.g., extinction versus spread. It remains to be established whether HIV transmission is a stochastic process on the whole. In this study, we consider the simplest (so-called, 'consensus') virus dynamics model and develop a computational methodology for building an equivalent stochastic model based on Markov Chain accounting for random interactions between the components. The model is used to study the evolution of the probability densities for the virus and target cell populations. It predicts the probability of infection spread as a function of the number of the transmitted viruses. A hybrid algorithm is suggested to compute efficiently the dynamics in state space domain characterized by a mix of small and large species densities

    Modeling Within-Host Dynamics of Influenza Virus Infection Including Immune Responses

    Get PDF
    Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection

    Mathematical models for immunology:current state of the art and future research directions

    Get PDF
    The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years
    • …
    corecore