1,710 research outputs found
Risk Factors Associated with Running Related Injuries in Physically Active Young Men
Please refer to the pdf version of the abstract located adjacent to the title
Stereocontrolled enantioselective total synthesis of the [2+2] quadrigemine alkaloids.
A unified strategy for enantioselective total synthesis of all stereoisomers of the 2+2 family of quadrigemine alkaloids is reported. In this approach, two enantioselective intramolecular Heck reactions are carried out at the same time on precursors fashioned in four steps from either meso- or (+)-chimonanthine to form the two critical quaternary carbons of the peripheral cyclotryptamine rings of these products. Useful levels of catalyst control are realized in either desymmetrizing a meso precursor or controlling diastereoselectivity in elaborating C2-symmetic intermediates. None of the synthetic quadrigemines are identical with alkaloids isolated previously and referred to as quadrigemines A and E. In addition, we report improvements in our previous total syntheses of (+)- or (-)-quadrigemine C that shortened the synthetic sequence to 10 steps and provided these products in 2.2% overall yield from tryptamine
Two-Timescale Learning Using Idiotypic Behaviour Mediation For A Navigating Mobile Robot
A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to
solving mobile-robot navigation problems is presented and tested in both the
real and virtual domains. The LTL phase consists of rapid simulations that use
a Genetic Algorithm to derive diverse sets of behaviours, encoded as variable
sets of attributes, and the STL phase is an idiotypic Artificial Immune System.
Results from the LTL phase show that sets of behaviours develop very rapidly,
and significantly greater diversity is obtained when multiple autonomous
populations are used, rather than a single one. The architecture is assessed
under various scenarios, including removal of the LTL phase and switching off
the idiotypic mechanism in the STL phase. The comparisons provide substantial
evidence that the best option is the inclusion of both the LTL phase and the
idiotypic system. In addition, this paper shows that structurally different
environments can be used for the two phases without compromising
transferability.Comment: 40 pages, 12 tables, Journal of Applied Soft Computin
Fission of a multiphase membrane tube
A common mechanism for intracellular transport is the use of controlled
deformations of the membrane to create spherical or tubular buds. While the
basic physical properties of homogeneous membranes are relatively well-known,
the effects of inhomogeneities within membranes are very much an active field
of study. Membrane domains enriched in certain lipids in particular are
attracting much attention, and in this Letter we investigate the effect of such
domains on the shape and fate of membrane tubes. Recent experiments have
demonstrated that forced lipid phase separation can trigger tube fission, and
we demonstrate how this can be understood purely from the difference in elastic
constants between the domains. Moreover, the proposed model predicts timescales
for fission that agree well with experimental findings
Helfrich-Canham bending energy as a constrained non-linear sigma model
The Helfrich-Canham bending energy is identified with a non-linear sigma
model for a unit vector. The identification, however, is dependent on one
additional constraint: that the unit vector be constrained to lie orthogonal to
the surface. The presence of this constraint adds a source to the divergence of
the stress tensor for this vector so that it is not conserved. The stress
tensor which is conserved is identified and its conservation shown to reproduce
the correct shape equation.Comment: 5 page
Geometry of lipid vesicle adhesion
The adhesion of a lipid membrane vesicle to a fixed substrate is examined
from a geometrical point of view. This vesicle is described by the Helfrich
hamiltonian quadratic in mean curvature; it interacts by contact with the
substrate, with an interaction energy proportional to the area of contact. We
identify the constraints on the geometry at the boundary of the shared surface.
The result is interpreted in terms of the balance of the force normal to this
boundary. No assumptions are made either on the symmetry of the vesicle or on
that of the substrate. The strong bonding limit as well as the effect of
curvature asymmetry on the boundary are discussed.Comment: 7 pages, some major changes in sections III and IV, version published
in Physical Review
Membrane geometry with auxiliary variables and quadratic constraints
Consider a surface described by a Hamiltonian which depends only on the
metric and extrinsic curvature induced on the surface. The metric and the
curvature, along with the basis vectors which connect them to the embedding
functions defining the surface, are introduced as auxiliary variables by adding
appropriate constraints, all of them quadratic. The response of the Hamiltonian
to a deformation in each of the variables is examined and the relationship
between the multipliers implementing the constraints and the conserved stress
tensor of the theory established.Comment: 8 page
Enhancement of Peroxidase Stability Against Oxidative Self-Inactivation by Co-immobilization with a Redox-Active Protein in Mesoporous Silicon and Silica Microparticles
Phase ordering and shape deformation of two-phase membranes
Within a coupled-field Ginzburg-Landau model we study analytically phase
separation and accompanying shape deformation on a two-phase elastic membrane
in simple geometries such as cylinders, spheres and tori. Using an exact
periodic domain wall solution we solve for the shape and phase ordering field,
and estimate the degree of deformation of the membrane. The results are
pertinent to a preferential phase separation in regions of differing curvature
on a variety of vesicles.Comment: 4 pages, submitted to PR
Porous silicon formation and electropolishing
Electrochemical etching of silicon in hydrofluoride containing electrolytes
leads to pore formation for low and to electropolishing for high applied
current. The transition between pore formation and polishing is accompanied by
a change of the valence of the electrochemical dissolution reaction. The local
etching rate at the interface between the semiconductor and the electrolyte is
determined by the local current density. We model the transport of reactants
and reaction products and thus the current density in both, the semiconductor
and the electrolyte. Basic features of the chemical reaction at the interface
are summarized in law of mass action type boundary conditions for the transport
equations at the interface. We investigate the linear stability of a planar and
flat interface. Upon increasing the current density the stability flips either
through a change of the valence of the dissolution reaction or by a nonlinear
boundary conditions at the interface.Comment: 18 pages, 8 figure
- …
