144 research outputs found

    Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction

    Get PDF
    Background and Objectives Mesenchymal stem cells (MSC) have been proposed as a way to treat graft-versus-host disease based on their immunosuppressive effect. We analyzed whether regulatory T cells can be generated in co-cultures of peripheral blood mononuclear cells (PBMC) and MSC.Design and Methods MSC were obtained from the bone marrow of four healthy donors and nine patients with acute leukemia in complete remission following chemotherapy. Short-term (4 days) co-cultures of MSC and autologous or allogeneic PBMC were set up, the lymphocytes harvested and their regulatory activity assessed.Results Lymphocytes harvested from MSC-PBMC co-cultures strongly inhibit (up to 95%) mixed lymphocyte reaction (MLR), recall to alloantigen, and CD3- or phytohemagglutinin-induced lymphocyte proliferation. These lymphocytes, termed regulatory cells (Regc), were all CD45+CD2+ with variable proportions of CD25+ cells (range 40–75% n=10) and a minor fraction expressed CTLA4 (2–4%, n=10) or glucocorticoid-induced tumor necrosis factcor receptor-related gene (0.5–4% n=10). Both CD4+ and CD8+ Regc purified from MSC-PBMC co-cultures strongly inhibited lymphocyte proliferation at a 1:100 Regc:responder cell ratio. CD4+ Regc expressed high levels of forkhead box P3 (Foxp3) mRNA while CD8+ Regc did not. The effectiveness of Regc, whether CD4+ or CD8+, was 100-fold higher than that of CD4+CD25+high regulatory T cells. Regc were also generated from highly purified CD25− PBMC or CD4+ or CD8+ T cell subsets. Soluble factors, such as interleukin-10, transforming growth factor-β and prostaglandin E2 did not appear to be involved in the generation of Regc or in the Regc-mediated immuno-suppressive effect. Furthermore, cyclosporine A did not affect Regc generation or the immunosuppression induced by Regc.Interpretation and Conclusions These findings indicate that powerful regulatory CD4+ or CD8+ lymphocytes are generated in co-cultures of PBMC with MSC. This strongly suggests that these regulatory cells may amplify the reported MSC-mediated immunosuppressive effect

    RADICAL FORMATION ON CTMP FIBERS BY ARGON PLASMA TREATMENTS AND RELATED LIGNIN CHEMICAL CHANGES

    Get PDF
    The changes at molecular level induced by cold argon plasma treat-ments on fibers obtained from chemi-thermo-mechanical pulp (CTMP) fibers were investigated. The radicals formed on CTMP fibers after treatments were identified and quantified by Electron Paramagnetic Resonance (EPR) spectroscopy. The plasma conditions which maximize the formation of radicals on fibers were assessed: after treatment with 0.4 mbar Ar pressure and 75 W radiofrequency power, phenoxy radicals triple their concentration in only 60 s and reach a value 4 times higher than that reported for laccase-catalyzed lignin oxidation. It was found that in plasma-treated fibers, the formation of radicals competes with their coupling. This latter result leads to cross-linkages of the lignin mono-meric units and formation of new intermonomeric C-C and C-O bonds, for the first time assigned to specific molecular interactions through Heteronuclear Single Quantum Coherence (2D-HSQC) spectroscopy and Nuclear Magnetic Resonance spectroscopy of carbon (13C-NMR). These results were confirmed by Nuclear Magnetic Resonance spectros-copy of phosphorous (31P-NMR). The lack of evidences of inter-fiber bond interactions, deduced from Gel Permeation Chromatography (GPC) data, suggests the possible application of plasma treatments for the production of wood fiber-based composites

    Optimization of Copper Stain Removal from Marble through the Formation of Cu(II) Complexes in Agar Gels

    Get PDF
    Copper complexes with different ligands (ethylenediaminetetraacetic acid, EDTA, ammonium citrate tribasic, TAC, and alanine, ALA) were studied in aqueous solutions and hydrogels with the aim of setting the optimal conditions for copper stain removal from marble by agar gels, with damage minimization. The stoichiometry and stability of copper complexes were monitored by ultraviolet-visible (UV-Vis) spectroscopy and the symmetry of Cu(II) centers in the different gel formulations was studied by electron paramagnetic resonance (EPR) spectroscopy. Cleaning effectiveness in optimized conditions was verified on marble laboratory specimens through color variations and by determining copper on gels by inductively coupled plasma-mass spectrometry (ICP-MS). Two copper complexes with TAC were identified, one having the known stoichiometry 1:1, and the other 1:2, Cu(TAC)2, never observed before. The stability of all the complexes at different pH was observed to increase with pH. At pH 10.0, the gel\u2019s effectiveness in removing copper salts from marble was the highest in the presence of ALA, followed by EDTA, TAC, and pure agar gel. Limited damage to the marble surface was observed when gels with added EDTA and TAC were employed, whereas agar gel with ALA was determined to be the most efficient and safe cleaning material

    Oxidation of Isoeugenol by Salen Complexes with Bulky Substituents

    Get PDF
    The catalytic properties of bulky water-soluble salen complexes in the oxidation of isoeugenol (2-methoxy-4-(1-propenyl) phenol) have been investigated in aqueous ethanol solutions in order to obtain a mixture of polymeric compounds through dehydrogenative polymerization. The average molecular weight of dehydrogenated polymers (DHPs) was monitored by GPC and correlated to reaction conditions such as time, concentration of substrate, concentration of catalyst, type of oxidation agent, etc. The DHP synthesized by adopting the best reaction conditions was characterized by different analytical techniques (GPC, 13C-NMR, 31P-NMR and LC-MS) to elucidate its structure. The lignin-like polymer resulting from isoeugenol radical coupling possesses valuable biological activity and finds applications in a variety of fields, such as packaging industry and cultural heritage conservation

    Understanding the microstructure of mortars for cultural heritage using X-ray CT and MIP

    Get PDF
    In this study, the microstructure of mock-up mortar specimens for a historic environment, composed of different mixtures, was studied using mercury intrusion porosity (MIP) and micro-computed tomography (\ub5CT), highlighting the advantages and drawbacks of both techniques. Po-rosity, sphericity, and pores size distribution were studied, evaluating changes according to mortar composition (aerial and hydraulic binders, quartz sand, and crushed limestone aggregate). The \ub5CT results were rendered using 3D visualization software, which provides complementary information for the interpretation of the data obtained using 3D data-analysis software. Moreover, \ub5CT contrib-utes to the interpretation of MIP results of mortars. On the other hand, MIP showed significant ink-bottle effects in lime and cement mortars samples that should be taken into account when interpret-ing the results. Moreover, the MIP results highlighted how gypsum mortar samples display a porosity distribution that is best studied using this technique. This multi-analytical approach provides important insights into the interpretation of the porosimetric data obtained. This is crucial in the characterization of mortars and provides key information for the study of building materials and cultural heritage conservation

    Historical silk: a novel method to evaluate degumming with non-invasive infrared spectroscopy and spectral deconvolution

    Get PDF
    : To correctly manage a collection of historical silks, it is important to detect if the yarn has been originally subjected to degumming. This process is generally applied to eliminate sericin; the obtained fiber is named soft silk, in contrast with hard silk which is unprocessed. The distinction between hard and soft silk gives both historical information and useful indications for informed conservation. With this aim, 32 samples of silk textiles from traditional Japanese samurai armors (15th-20th century) were characterized in a non-invasive way. ATR-FTIR spectroscopy has been previously used to detect hard silk, but data interpretation is challenging. To overcome this difficulty, an innovative analytical protocol based on external reflection FTIR (ER-FTIR) spectroscopy was employed, coupled with spectral deconvolution and multivariate data analysis. The ER-FTIR technique is rapid, portable, and widely employed in the cultural heritage field, but rarely applied to the study of textiles. The ER-FTIR band assignment for silk was discussed for the first time. Then, the evaluation of the OH stretching signals allowed for a reliable distinction between hard and soft silk. Such an innovative point of view, which exploits a "weakness" of FTIR spectroscopy-the strong absorption from water molecules-to indirectly obtain the results, can have industrial applications too

    Inverted Opal Luminescent Ce-Doped Silica Glasses

    Get PDF
    Inverted opal Ce-doped silica glasses (Ce : Si molar ratio 1 ⋅ 10−3 were prepared by a sol-gel method using opals of latex microspheres as templates. The rare earth is homogeneously dispersed in silica host matrix, as evidenced by the absence of segregated CeO2, instead present in monolithic Ce-doped SG with the same cerium content. This suggests that the nanometric dimensions of bridges and junctions of the host matrix in the inverted opal structures favor the RE distribution avoiding the possible segregation of CeO2

    Inhibitory 2B4 contributes to NK cell education and immunological derangements in XLP1 patients

    Get PDF
    X-linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)-associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV-infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig-like receptor (KIR)/KIR-L genotype and phenotypic repertoire of self-HLA class I specific inhibitory NK receptors (self-iNKRs). We also analyzed NK-cell cytotoxicity against CD48+ or CD48− KIR-ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self-iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV-transformed B cells and M1 macrophages. Importantly, self-iNKR defective NK cells kill CD48− targets, such as mature DCs. Self-iNKR− NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK-cell maturation. Killing of autologous mature DC by self-iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients’ immune defect

    Laboratory-scale photomineralization of n-alkanes in gaseous phase by photocatalytic membranes immobilizing titanium dioxide

    Get PDF
    Kinetics of photocatalytic oxidation of methane, ethane, and n-heptane, to yield intermediates, and photomineralization of intermediates, to yield carbon dioxide and water, was studied in the gaseous phase, at 308 ± 2 K, by a laboratory-scale photoreactor and photocatalytic membranes immobilizing 30 ± 3 wt.% of TiO 2 , in the presence of aerosolized stoichiometric hydrogen peroxide as oxygen donor, and at a relative humidity close to 100%. The whole volume of irradiated solution was 4.000 ± 0.005 L, the ratio between this volume and the geometrical apparent surface of the irradiated side of the photocatalytic membrane was 3.8±0.1 cm, and the absorbed power was 0.30 W/cm (cylindrical geometry). The pinetic parameters of the present work substantially coincide with those of the same molecules previously studied in aqueous solution, within the limits of experimental uncertainty. Photocatalytic processes thus appear to be controlled by interface phenomena, which are ruled kinetically, and apparently also thermodynamically, by concentration gradients, independently on diffusion and other processes in the aqueous or gaseous bulk, if turbulence in these phases is adequately assured
    • …
    corecore