511 research outputs found

    Quantitative Phase Diagrams of Branching and Annihilating Random Walks

    Full text link
    We demonstrate the full power of nonperturbative renormalisation group methods for nonequilibrium situations by calculating the quantitative phase diagrams of simple branching and annihilating random walks and checking these results against careful numerical simulations. Specifically, we show, for the 2A->0, A -> 2A case, that an absorbing phase transition exists in dimensions d=1 to 6, and argue that mean field theory is restored not in d=3, as suggested by previous analyses, but only in the limit d -> \infty.Comment: 4 pages, 3 figures, published version (some typos corrected

    Non-perturbative Approach to Critical Dynamics

    Full text link
    This paper is devoted to a non-perturbative renormalization group (NPRG) analysis of Model A, which stands as a paradigm for the study of critical dynamics. The NPRG formalism has appeared as a valuable theoretical tool to investigate non-equilibrium critical phenomena, yet the simplest -- and nontrivial -- models for critical dynamics have never been studied using NPRG techniques. In this paper we focus on Model A taking this opportunity to provide a pedagological introduction to NPRG methods for dynamical problems in statistical physics. The dynamical exponent zz is computed in d=3d=3 and d=2d=2 and is found in close agreement with results from other methods.Comment: 13 page

    Nonperturbative renormalization group approach to the Ising model: a derivative expansion at order 4\partial^4

    Get PDF
    On the example of the three-dimensional Ising model, we show that nonperturbative renormalization group equations allow one to obtain very accurate critical exponents. Implementing the order 4\partial^4 of the derivative expansion leads to ν=0.632\nu=0.632 and to an anomalous dimension η=0.033\eta=0.033 which is significantly improved compared with lower orders calculations.Comment: 4 pages, 3 figure

    General framework of the non-perturbative renormalization group for non-equilibrium steady states

    Full text link
    This paper is devoted to presenting in detail the non-perturbative renormalization group (NPRG) formalism to investigate out-of-equilibrium systems and critical dynamics in statistical physics. The general NPRG framework for studying non-equilibrium steady states in stochastic models is expounded and fundamental technicalities are stressed, mainly regarding the role of causality and of Ito's discretization. We analyze the consequences of Ito's prescription in the NPRG framework and eventually provide an adequate regularization to encode them automatically. Besides, we show how to build a supersymmetric NPRG formalism with emphasis on time-reversal symmetric problems, whose supersymmetric structure allows for a particularly simple implementation of NPRG in which causality issues are transparent. We illustrate the two approaches on the example of Model A within the derivative expansion approximation at order two, and check that they yield identical results.Comment: 28 pages, 1 figure, minor corrections prior to publicatio

    Reaction-diffusion processes and non-perturbative renormalisation group

    Full text link
    This paper is devoted to investigating non-equilibrium phase transitions to an absorbing state, which are generically encountered in reaction-diffusion processes. It is a review, based on [Phys. Rev. Lett. 92, 195703; Phys. Rev. Lett. 92, 255703; Phys. Rev. Lett. 95, 100601], of recent progress in this field that has been allowed by a non-perturbative renormalisation group approach. We mainly focus on branching and annihilating random walks and show that their critical properties strongly rely on non-perturbative features and that hence the use of a non-perturbative method turns out to be crucial to get a correct picture of the physics of these models.Comment: 14 pages, submitted to J. Phys. A for the proceedings of the conference 'Renormalization Group 2005', Helsink

    Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire

    Get PDF
    We study the metal-insulator transition in individual self-assembled quantum wires and report optical evidences of metallic liquid condensation at low temperatures. Firstly, we observe that the temperature and power dependence of the single nanowire photoluminescence follow the evolution expected for an electron-hole liquid in one dimension. Secondly, we find novel spectral features that suggest that in this situation the expanding liquid condensate compresses the exciton gas in real space. Finally, we estimate the critical density and critical temperature of the phase transition diagram at nc1×105n_c\sim1\times10^5 cm1^{-1} and Tc35T_c\sim35 K, respectively.Comment: 4 pages, 5 figure

    A straightforward route to spiroketals

    Get PDF
    A straightforward route to 1,7-dioxa-, 1,4,7-trioxa- and 1,4,7,10-tetraoxaspiro[5.5]undecanes, starting from commercially available 3-chloro-2(chloromethyl)prop-1-ene, is describe

    Charge control in laterally coupled double quantum dots

    Get PDF
    We investigate the electronic and optical properties of InAs double quantum dots grown on GaAs (001) and laterally aligned along the [110] crystal direction. The emission spectrum has been investigated as a function of a lateral electric field applied along the quantum dot pair mutual axis. The number of confined electrons can be controlled with the external bias leading to sharp energy shifts which we use to identify the emission from neutral and charged exciton complexes. Quantum tunnelling of these electrons is proposed to explain the reversed ordering of the trion emission lines as compared to that of excitons in our system.Comment: 4 pages, 4 figures submitted to PRB Rapid Com

    Nonequilibrium critical behavior of a species coexistence model

    Full text link
    A biologically motivated model for spatio-temporal coexistence of two competing species is studied by mean-field theory and numerical simulations. In d>1 dimensions the phase diagram displays an extended region where both species coexist, bounded by two second-order phase transition lines belonging to the directed percolation universality class. The two transition lines meet in a multicritical point, where a non-trivial critical behavior is observed.Comment: 11 page

    Functional renormalization group with a compactly supported smooth regulator function

    Full text link
    The functional renormalization group equation with a compactly supported smooth (CSS) regulator function is considered. It is demonstrated that in an appropriate limit the CSS regulator recovers the optimized one and it has derivatives of all orders. The more generalized form of the CSS regulator is shown to reduce to all major type of regulator functions (exponential, power-law) in appropriate limits. The CSS regulator function is tested by studying the critical behavior of the bosonized two-dimensional quantum electrodynamics in the local potential approximation and the sine-Gordon scalar theory for d<2 dimensions beyond the local potential approximation. It is shown that a similar smoothing problem in nuclear physics has already been solved by introducing the so called Salamon-Vertse potential which can be related to the CSS regulator.Comment: JHEP style, 11 pages, 2 figures, proofs corrected, accepted for publication by JHE
    corecore