6,565 research outputs found

    Study of the isotropic contribution to the analysis of photoelectron diffraction experiments at the ALOISA beamline

    Full text link
    The angular distribution of the intensity in photoemission experiments is affected by electron diffraction patterns and by a smoothly varying ISO contribution originated by both intrumental details and physical properties of the samples. The origin of the various contributions to the ISO component has been identified since many years. Nonetheless in this work we present original developement of the ED analysis, which arises from the evolution of instrumental performance, in terms of analyzers positioning and angular resolution, as well as collimation and size of X-ray beams in third generation synchrotron sources. The analytical treatement of the instrumental factors is presented in detail for the end station of the ALOISA beamline (Trieste Synchrotron), where a wide variety of scattering geometries is available for ED experiments. We present here the basic formulae and their application to experimental data taken on the Fe/Cu3Au(001) system in order to highlight the role of the various parameters included in the distribution function. A specific model for the surface illumination has been developed as well as the overlayer thickness and surface roughness have been considered.Comment: RevTex, nine pages with five eps figures; to be published in J. Electron Spectrosc. Relat. Pheno

    A Two-Step Approach to Tune the Micro and Nanoscale Morphology of Porous Niobium Oxide to Promote Osteointegration

    Get PDF
    We present a two-step surface modification process to tailor the micro and nano morphology of niobium oxide layers. Niobium was firstly anodized in spark regime in a Ca-and P-containing solution and subsequently treated by acid etching. The effects of anodizing time and applied potential on the surface morphology is investigated with SEM and AFM, complemented by XPS compositional analysis. Anodizing with a limiting potential of 250 V results in the fast growth of oxide layers with a homogeneous distribution of micro-sized pores. Cracks are, however, observed on 250 V grown layers. Limiting the anodizing potential to 200 V slows down the oxide growth, increasing the anodizing time needed to achieve a uniform pore coverage but produces fracture-free oxide layers. The surface nano morphology is further tuned by a subsequent acid etching process that leads to the formation of nano-sized pits on the anodically grown oxide surface. In vitro tests show that the etching-induced nanostructure effectively promotes cell adhesion and spreading onto the niobium oxide surface

    Understanding the Initial Stages of Reversible Mg Deposition and Stripping in Inorganic Non-Aqueous Electrolytes

    Full text link
    Multi-valent (MV) battery architectures based on pairing a Mg metal anode with a high-voltage (∌\sim 3 V) intercalation cathode offer a realistic design pathway toward significantly surpassing the energy storage performance of traditional Li-ion based batteries, but there are currently only few electrolyte systems that support reversible Mg deposition. Using both static first-principles calculations and ab  initioab\; initio molecular dynamics, we perform a comprehensive adsorption study of several salt and solvent species at the interface of Mg metal with an electrolyte of Mg2+^{2+} and Cl−^- dissolved in liquid tetrahydrofuran (THF). Our findings not only provide a picture of the stable species at the interface, but also explain how this system can support reversible Mg deposition and as such we provide insights in how to design other electrolytes for Mg plating and stripping. The active depositing species are identified to be (MgCl)+^+ monomers coordinated by THF, which exhibit preferential adsorption on Mg compared to possible passivating species (such as THF solvent or neutral MgCl2_2 complexes). Upon deposition, the energy to desolvate these adsorbed complexes and facilitate charge-transfer is shown to be small (∌\sim 61 −- 46.2 kJ mol−1^{-1} to remove 3 THF from the strongest adsorbing complex), and the stable orientations of the adsorbed but desolvated (MgCl)+^+ complexes appear favorable for charge-transfer. Finally, observations of Mg-Cl dissociation at the Mg surface at very low THF coordinations (0 and 1) suggest that deleterious Cl incorporation in the anode may occur upon plating. In the stripping process, this is beneficial by further facilitating the Mg removal reaction

    Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)

    Full text link
    The phase immiscibility and the excellent matching between Ag(001) and Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field of low dimensionality magnetic systems. Intermixing could be drastically limited at deposition temperatures as low as 140-150 K. The film structural evolution induced by post-growth annealing presents many interesting aspects involving activated atomic exchange processes and affecting magnetic properties. Previous experiments, of He and low energy ion scattering on films deposited at 150 K, indicated the formation of a segregated Ag layer upon annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag matrix. In those experiments, information on sub-surface layers was attained by techniques mainly sensitive to the topmost layer. Here, systematic PED measurements, providing chemical selectivity and structural information for a depth of several layers, have been accompanied with a few XRD rod scans, yielding a better sensitivity to the buried interface and to the film long range order. The results of this paper allow a comparison with recent models enlightening the dissolution paths of an ultra thin metal film into a different metal, when both subsurface migration of the deposit and phase separation between substrate and deposit are favoured. The occurrence of a surfactant-like stage, in which a single layer of Ag covers the Fe film is demonstrated for films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the formation of two Ag capping layers is also reported. As the annealing temperature was increased beyond 700 K, the surface layers closely resembled the structure of bare Ag(001) with the residual presence of subsurface Fe aggregates.Comment: 4 pages, 3 figure

    From bi-layer to tri-layer Fe nanoislands on Cu3Au(001)

    Full text link
    Self assembly on suitably chosen substrates is a well exploited root to control the structure and morphology, hence magnetization, of metal films. In particular, the Cu3Au(001) surface has been recently singled out as a good template to grow high spin Fe phases, due to the close matching between the Cu3Au lattice constant (3.75 Angstrom) and the equilibrium lattice constant for fcc ferromagnetic Fe (3.65 Angstrom). Growth proceeds almost layer by layer at room temperature, with a small amount of Au segregation in the early stage of deposition. Islands of 1-2 nm lateral size and double layer height are formed when 1 monolayer of Fe is deposited on Cu3Au(001) at low temperature. We used the PhotoElectron Diffraction technique to investigate the atomic structure and chemical composition of these nanoislands just after the deposition at 140 K and after annealing at 400 K. We show that only bi-layer islands are formed at low temperature, without any surface segregation. After annealing, the Fe atoms are re-aggregated to form mainly tri-layer islands. Surface segregation is shown to be inhibited also after the annealing process. The implications for the film magnetic properties and the growth model are discussed.Comment: Revtex, 5 pages with 4 eps figure

    Silicone Oil Tamponade Removal: Which Technique Is More Effective? An X-Ray Photoemission Spectroscopy Study

    Get PDF
    Purpose: To compare the efficacy of two surgical techniques used to remove silicone oil (SiO) emulsion tamponade after pars plana vitrectomy: triple air–fluid exchange (AFX) and balanced salt solution lavage (BSSL). Methods: X-ray photoemission spectroscopy measured silicon content of the dry residue of fluid samples taken during AFX and BSSL. Ten patients underwent AFX and five BSSL. Three fluid samples were taken per patient, and the dry residue of 10 drops per sample were analyzed. A fluid sample from a patient who never received SiO tamponade was also analyzed to set a “blank” reference sample. Results: Patients’ demographics showed no significant difference. Sample 1 of the two groups contained comparable silicon content while samples 2 and 3 of the AFX group contained significantly more silicon than that of the BSSL group (15.0 ± 0.1 and 12.0 ± 0.9 for the AFX group vs. 10.7 ± 1.4 and 5.2 ± 0.6 for the BSSL group, respectively; P < 0.05). The cumulative amount of silicon in the three successive samples was also significantly higher for the AFX group (42.3 ± 1.6 vs. 32 ± 2; P < 0.0001). The average silicon content ratio of consecutive samples was significantly higher for the AFX group compared to the BSSL group (0.90 ± 0.01 vs. 0.58 ± 0.06; P = 0.006). Conclusions: Triple AFX removed more silicon than triple lavage. The eye wall actively interacts with silicon emulsion retaining silicon content rather than behaving as a neutral container. Translational Relevance: Triple air–fluid exchange removed more silicon than BSS lavage. Neither technique behaved as a well-mixed box dilution, suggesting the eye walls actively retain emulsion and a dynamic equilibrium is established between silicon dispersion and the eye wall surface

    Elastic and vibrational properties of alpha and beta-PbO

    Full text link
    The structure, electronic and dynamic properties of the two layered alpha (litharge) and beta (massicot) phases of PbO have been studied by density functional methods. The role of London dispersion interactions as leading component of the total interaction energy between layers has been addressed by using the Grimme's approach, in which new parameters for Pb and O atoms have been developed. Both gradient corrected and hybrid functionals have been adopted using Gaussian-type basis sets of polarized triple zeta quality for O atoms and small core pseudo-potential for the Pb atoms. Basis set superposition error (BSSE) has been accounted for by the Boys-Bernardi correction to compute the interlayer separation. Cross check with calculations adopting plane waves that are BSSE free have also been performed for both structures and vibrational frequencies. With the new set of proposed Grimme's type parameters structures and dynamical parameters for both PbO phases are in good agreement with experimental data.Comment: 8 pages, 5 figure

    Real-world versus trial patients with transthyretin amyloid cardiomyopathy

    Get PDF
    Transthyretin (TTR) amyloid cardiomyopathy (ATTR‐AC) is caused either by single‐point mutations in the TTR gene (ATTRv‐AC) or by deposition of the wild‐type protein (ATTRwt‐AC).1 Long been considered a rare disease, ATTR‐AC has been increasingly recognized in recent years, particularly among the elderly,1 mostly due to the possibility of a non‐invasive diagnosis through bone scintigraph
    • 

    corecore