66 research outputs found

    The impact of branched-chain amino acid supplementation on measures of glucose homeostasis in individuals with hepatic disorders: A systematic review of clinical studies.

    Get PDF
    BACKGROUND: Branched chain amino acid (BCAA) supplementation may influence glucose metabolism in individuals with impaired glycemic profile. This systematic review investigated the effects of isolated BCAA supplementation on measures of glucose homeostasis in individuals with hepatic disorders. METHODS: We searched PubMed, Web of Science, Cochrane Library, and Scopus for published clinical trials that investigated the effects of isolated BCAA supplementation on measures of glucose homeostasis, including serum glucose and insulin, glycated hemoglobin (HbA1c) levels, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) scores. RESULTS: Eleven trials met the inclusion criteria. Only one study revealed a decrease in serum glucose from BCAA supplementation compared to three studies that showed increases. Five studies demonstrated no significant changes in serum glucose, and two studies displayed no changes in HbA1c following BCAA supplementation. Serum levels of insulin were decreased in three studies, remained unchanged in one, whilst increased in the remaining three studies. BCAA supplementation reduced HOMA-IR scores in two studies, increased HOMA-IR scores in another two or resulted in no changes in two other studies. CONCLUSIONS: BCAA supplementation in isolation had no effect on overall glucose homeostasis in individuals with hepatic disorders, although some improvements on serum insulin levels and HOMA-IR scores were observed. Overall, there is little evidence to support the utilization of BCAA supplementation as a potential nutritional strategy for improving measures of glucose homeostasis in individuals with hepatic disorders. This article is protected by copyright. All rights reserved

    Effect of carbohydrate-protein supplement timing on acute exercise-induced muscle damage

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To determine if timing of a supplement would have an effect on muscle damage, function and soreness.</p> <p>Methods</p> <p>Twenty-seven untrained men (21 ± 3 yrs) were given a supplement before or after exercise. Subjects were randomly assigned to a pre exercise (n = 9), received carbohydrate/protein drink before exercise and placebo after, a post exercise (n = 9), received placebo before exercise and carbohydrate/protein drink after, or a control group (n = 9), received placebo before and after exercise. Subjects performed 50 eccentric quadriceps contractions on an isokinetic dynamometer. Tests for creatine kinase (CK), maximal voluntary contraction (MVC) and muscle soreness were recorded before exercise and at six, 24, 48, 72, and 96 h post exercise. Repeated measures ANOVA were used to analyze data.</p> <p>Results</p> <p>There were no group by time interactions however, CK significantly increased for all groups when compared to pre exercise (101 ± 43 U/L) reaching a peak at 48 h (661 ± 1178 U/L). MVC was significantly reduced at 24 h by 31.4 ± 14.0%. Muscle soreness was also significantly increased from pre exercise peaking at 48 h.</p> <p>Conclusion</p> <p>Eccentric exercise caused significant muscle damage, loss of strength, and soreness; however timing of ingestion of carbohydrate/protein supplement had no effect.</p

    Resistance training with soy vs whey protein supplements in hyperlipidemic males

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most individuals at risk for developing cardiovascular disease (CVD) can reduce risk factors through diet and exercise before resorting to drug treatment. The effect of a combination of resistance training with vegetable-based (soy) versus animal-based (whey) protein supplementation on CVD risk reduction has received little study. The study's purpose was to examine the effects of 12 weeks of resistance exercise training with soy versus whey protein supplementation on strength gains, body composition and serum lipid changes in overweight, hyperlipidemic men.</p> <p>Methods</p> <p>Twenty-eight overweight, male subjects (BMI 25–30) with serum cholesterol >200 mg/dl were randomly divided into 3 groups (placebo (n = 9), and soy (n = 9) or whey (n = 10) supplementation) and participated in supervised resistance training for 12 weeks. Supplements were provided in a double blind fashion.</p> <p>Results</p> <p>All 3 groups had significant gains in strength, averaging 47% in all major muscle groups and significant increases in fat free mass (2.6%), with no difference among groups. Percent body fat and waist-to-hip ratio decreased significantly in all 3 groups an average of 8% and 2%, respectively, with no difference among groups. Total serum cholesterol decreased significantly, again with no difference among groups.</p> <p>Conclusion</p> <p>Participation in a 12 week resistance exercise training program significantly increased strength and improved both body composition and serum cholesterol in overweight, hypercholesterolemic men with no added benefit from protein supplementation.</p

    Protocol for Work place adjusted Intelligent physical exercise reducing Musculoskeletal pain in Shoulder and neck (VIMS): a cluster randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neck and shoulder complaints are common among employees in sedentary occupations characterized by intensive computer use. Specific strength training is a promising type of physical exercise for relieving neck and shoulder pain in office workers. However, the optimal combination of frequency and exercise duration, as well as the importance of exercise supervision, is unknown. The VIMS study investigates in a cluster randomized controlled design the effectiveness of different time wise combinations of specific strength training with identical accumulated volume, and the relevance of training supervision for safe and effective training.</p> <p>Methods/design</p> <p>A cluster randomized controlled trial of 20 weeks duration where employed office workers are randomized to 1 × 60 min, 3 × 20 min, 9 × 7 min per week of specific strength training with training supervision, to 3 × 20 min per week of specific strength training with a minimal amount of training supervision, or to a reference group without training. A questionnaire will be sent to 2000 employees in jobs characterized by intensive computer work. Employees with cardiovascular disease, trauma, hypertension, or serious chronic disease will be excluded. The main outcome measure is pain in the neck and shoulders at week 20.</p> <p>Trial Registration</p> <p>The trial is registered at ClinicalTrials.gov, number NCT01027390.</p

    Effects of a Caffeine-Containing Energy Drink on Simulated Soccer Performance

    Get PDF
    [Background] To investigate the effects of a caffeine-containing energy drink on soccer performance during a simulated game. A second purpose was to assess the post-exercise urine caffeine concentration derived from the energy drink intake. [Methodology/Principal Findings] Nineteen semiprofessional soccer players ingested 630±52 mL of a commercially available energy drink (sugar-free Red Bull®) to provide 3 mg of caffeine per kg of body mass, or a decaffeinated control drink (0 mg/kg). After sixty minutes they performed a 15-s maximal jump test, a repeated sprint test (7×30 m; 30 s of active recovery) and played a simulated soccer game. Individual running distance and speed during the game were measured using global positioning satellite (GPS) devices. In comparison to the control drink, the ingestion of the energy drink increased mean jump height in the jump test (34.7±4.7 v 35.8±5.5 cm; P<0.05), mean running speed during the sprint test (25.6±2.1 v 26.3±1.8 km · h−1; P<0.05) and total distance covered at a speed higher than 13 km · h−1 during the game (1205±289 v 1436±326 m; P<0.05). In addition, the energy drink increased the number of sprints during the whole game (30±10 v 24±8; P<0.05). Post-exercise urine caffeine concentration was higher after the energy drink than after the control drink (4.1±1.0 v 0.1±0.1 µg · mL−1; P<0.05). [Conclusions/significance] A caffeine-containing energy drink in a dose equivalent to 3 mg/kg increased the ability to repeatedly sprint and the distance covered at high intensity during a simulated soccer game. In addition, the caffeinated energy drink increased jump height which may represent a meaningful improvement for headers or when players are competing for a ball

    A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial

    Get PDF
    Protein and other compounds can exert anabolic effects on skeletal muscle, particularly in conjunction with exercise. The objective of this study was to evaluate the efficacy of twice daily consumption of a protein-based, multi-ingredient nutritional supplement to increase strength and lean mass independent of, and in combination with, exercise in healthy older men. Forty-nine healthy older men (age: 73 ± 1 years [mean ± SEM]; BMI: 28.5 ± 1.5 kg/m2) were randomly allocated to 20 weeks of twice daily consumption of either a nutritional supplement (SUPP; n = 25; 30 g whey protein, 2.5 g creatine, 500 IU vitamin D, 400 mg calcium, and 1500 mg n-3 PUFA with 700 mg as eicosapentanoic acid and 445 mg as docosahexanoic acid); or a control (n = 24; CON; 22 g of maltodextrin). The study had two phases. Phase 1 was 6 weeks of SUPP or CON alone. Phase 2 was a 12 week continuation of the SUPP/CON but in combination with exercise: SUPP + EX or CON + EX. Isotonic strength (one repetition maximum [1RM]) and lean body mass (LBM) were the primary outcomes. In Phase 1 only the SUPP group gained strength (Σ1RM, SUPP: +14 ± 4 kg, CON: +3 ± 2 kg, P < 0.001) and lean mass (LBM, +1.2 ± 0.3 kg, CON: -0.1 ± 0.2 kg, P < 0.001). Although both groups gained strength during Phase 2, upon completion of the study upper body strength was greater in the SUPP group compared to the CON group (Σ upper body 1RM: 119 ± 4 vs. 109 ± 5 kg, P = 0.039). We conclude that twice daily consumption of a multi-ingredient nutritional supplement increased muscle strength and lean mass in older men. Increases in strength were enhanced further with exercise training

    Correction: International Society of Sports Nutrition position stand: Nutrient timing

    Get PDF
    Position Statement: The position of the Society regarding nutrient timing and the intake of carbohydrates, proteins, and fats in reference to healthy, exercising individuals is summarized by the following eight points: 1.) Maximal endogenous glycogen stores are best promoted by following a high-glycemic, high-carbohydrate (CHO) diet (600 – 1000 grams CHO or ~8 – 10 g CHO/kg/d), and ingestion of free amino acids and protein (PRO) alone or in combination with CHO before resistance exercise can maximally stimulate protein synthesis. 2.) During exercise, CHO should be consumed at a rate of 30 – 60 grams of CHO/hour in a 6 – 8% CHO solution (8 – 16 fluid ounces) every 10 – 15 minutes. Adding PRO to create a CHO:PRO ratio of 3 – 4:1 may increase endurance performance and maximally promotes glycogen re-synthesis during acute and subsequent bouts of endurance exercise. 3.) Ingesting CHO alone or in combination with PRO during resistance exercise increases muscle glycogen, offsets muscle damage, and facilitates greater training adaptations after either acute or prolonged periods of supplementation with resistance training. 4.) Post-exercise (within 30 minutes) consumption of CHO at high dosages (8 – 10 g CHO/kg/day) have been shown to stimulate muscle glycogen re-synthesis, while adding PRO (0.2 g – 0.5 g PRO/kg/day) to CHO at a ratio of 3 – 4:1 (CHO: PRO) may further enhance glycogen re-synthesis. 5.) Post-exercise ingestion (immediately to 3 h post) of amino acids, primarily essential amino acids, has been shown to stimulate robust increases in muscle protein synthesis, while the addition of CHO may stimulate even greater levels of protein synthesis. Additionally, pre-exercise consumption of a CHO + PRO supplement may result in peak levels of protein synthesis. 6.) During consistent, prolonged resistance training, post-exercise consumption of varying doses of CHO + PRO supplements in varying dosages have been shown to stimulate improvements in strength and body composition when compared to control or placebo conditions. 7.) The addition of creatine (Cr) (0.1 g Cr/kg/day) to a CHO + PRO supplement may facilitate even greater adaptations to resistance training. 8.) Nutrient timing incorporates the use of methodical planning and eating of whole foods, nutrients extracted from food, and other sources. The timing of the energy intake and the ratio of certain ingested macronutrients are likely the attributes which allow for enhanced recovery and tissue repair following high-volume exercise, augmented muscle protein synthesis, and improved mood states when compared with unplanned or traditional strategies of nutrient intake

    Ageing, Muscle Power and Physical Function: A Systematic Review and Implications for Pragmatic Training Interventions.

    Get PDF
    BACKGROUND: The physiological impairments most strongly associated with functional performance in older people are logically the most efficient therapeutic targets for exercise training interventions aimed at improving function and maintaining independence in later life. OBJECTIVES: The objectives of this review were to (1) systematically review the relationship between muscle power and functional performance in older people; (2) systematically review the effect of power training (PT) interventions on functional performance in older people; and (3) identify components of successful PT interventions relevant to pragmatic trials by scoping the literature. METHODS: Our approach involved three stages. First, we systematically reviewed evidence on the relationship between muscle power, muscle strength and functional performance and, second, we systematically reviewed PT intervention studies that included both muscle power and at least one index of functional performance as outcome measures. Finally, taking a strong pragmatic perspective, we conducted a scoping review of the PT evidence to identify the successful components of training interventions needed to provide a minimally effective training dose to improve physical function. RESULTS: Evidence from 44 studies revealed a positive association between muscle power and indices of physical function, and that muscle power is a marginally superior predictor of functional performance than muscle strength. Nine studies revealed maximal angular velocity of movement, an important component of muscle power, to be positively associated with functional performance and a better predictor of functional performance than muscle strength. We identified 31 PT studies, characterised by small sample sizes and incomplete reporting of interventions, resulting in less than one-in-five studies judged as having a low risk of bias. Thirteen studies compared traditional resistance training with PT, with ten studies reporting the superiority of PT for either muscle power or functional performance. Further studies demonstrated the efficacy of various methods of resistance and functional task PT on muscle power and functional performance, including low-load PT and low-volume interventions. CONCLUSIONS: Maximal intended movement velocity, low training load, simple training methods, low-volume training and low-frequency training were revealed as components offering potential for the development of a pragmatic intervention. Additionally, the research area is dominated by short-term interventions producing short-term gains with little consideration of the long-term maintenance of functional performance. We believe the area would benefit from larger and higher-quality studies and consideration of optimal long-term strategies to develop and maintain muscle power and physical function over years rather than weeks
    corecore