2,749 research outputs found

    Sampling and series expansion theorems for fractional Fourier and other transforms

    Get PDF
    Cataloged from PDF version of article.We present muchbriefer and more direct and transparent derivations of some sampling and series expansion relations for fractional Fourier and other transforms. In addition to the fractional Fourier transform, the method can also be applied to the Fresnel, Hartley, and scale transform and other relatives of the Fourier transform. (C) 2003 Published by Elsevier B.

    Resolving genetic relationships in manna group of lichens from genus Aspicilia

    Get PDF
    As in many lichen-forming fungi, species of Aspicilia genus are widely distributed all over the world, but no reports exist about their phylogenetic relations based on molecular biological methods. In thecurrent study the phylogenetic relations of some Aspicilia species mainly manna group of lichens were investigated. The ITS rDNA sequence information of 12 samples from six species were generated. The samples examined were collected from different provinces of Anatolia and all the sequences were aligned with the other allied groups; Pertusaria sp., Thamnolia sp., Dibaeis sp., Diploschistes sp.,Ochrolechia sp. and Lecanora sp. sequence data obtained from GenBank. The phylogenetic tree obtained by minimum evolution analysis displayed two major branches. One of the branches with itssix members (Aspicilia contorta subsp. contorta, A. contorta subsp. hoffmanniana, Aspicilia hispida, Aspicilia fruticulosa, Aspicilia desertorum Aspicilia calcarea) composed solely of Aspicilia samplesfrom Anatolia. Three of the manna groups of lichens were placed in this branch of the tree. The other related taxa from Ostropomycetidae and Lecanoromycetidae took place in the other branch of the treewith Aspicilia samples from Anatolia. Results displayed that manna group of lichens, although do not represent taxonomical unit tend to form a group especially apperent by the Neigbour Joining analysiswith Anatolian samples. Also the sequence information from Anatolian samples displayed that Aspicilia genus is phylogenetically closer to the orders and families from Ostropomycetidae subclass rather than Lecanoromycetidae which support the placement of Hymeneliaceae within Ostropomycetidae

    Nanofiber-enhanced lightweight composite textiles for acoustic applications

    Get PDF
    This paper proposes lightweight textile acoustic structure, wherein electrospun polyacrylonitrile-based nanofibers enhance sound absorption properties with no weight and thickness penalty. Polyacrylonitrile nanofibers with diameter of 110 ± 7 nm were electrospun on spacer-knitted fabrics by varying deposition amount and surface coating arrangement. Proposed novel approach eliminated additional processing steps such as handling and post-lamination and provided easy scalability of nanofibers at macro-scale. The results showed that the sound absorption of nano-enhanced specimens was improved drastically when deposited amount of nanofibers or its effective surface area increased. Sound propagation paths in different configurations were interpreted from sound absorption and air permeability measurements. The sound absorption coefficient values up to 0.7 are achieved in the low and medium frequency ranges with no weight and thickness penalty by tuning deposition amount and surface coating arrangement

    Engineering peptide-polymer hybrids for targeted repair and protection of cervical lesions

    Get PDF
    By 2060, nearly 100 million people in the U.S. will be over age 65 years. One-third of these older adults will have root caries, and nearly 80% will have dental erosion. These conditions can cause pain and loss of tooth structure that interfere with eating, speaking, sleeping, and quality of life. Current treatments for root caries and dental erosion have produced unreliable results. For example, the glass-ionomer-cement or composite-resin restorations used to treat these lesions have annual failure rates of 44% and 17%, respectively. These limitations and the pressing need to treat these conditions in the aging population are driving a focus on microinvasive strategies, such as sealants and varnishes. Sealants can inhibit caries on coronal surfaces, but they are ineffective for root caries. For healthy, functionally independent elders, chlorhexidine varnish applied every 3 months inhibits root caries, but this bitter-tasting varnish stains the teeth. Fluoride gel inhibits root caries, but requires prescriptions and daily use, which may not be feasible for some older patients. Silver diamine fluoride can both arrest and inhibit root caries but stains the treated tooth surface black. The limitations of current approaches and high prevalence of root caries and dental erosion in the aging population create an urgent need for microinvasive therapies that can: (a) remineralize damaged dentin; (b) inhibit bacterial activity; and (c) provide durable protection for the root surface. Since cavitated and non-cavitated root lesions are difficult to distinguish, optimal approaches will treat both. This review will explore the multi-factorial elements that contribute to root surface lesions and discuss a multi-pronged strategy to both repair and protect root surfaces. The strategy integrates engineered peptides, novel polymer chemistry, multi-scale structure/property characterization and predictive modeling to develop a durable, microinvasive treatment for root surface lesions

    Chimeric peptides as implant functionalization agents for titanium alloy implants with antimicrobial properties

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11837-015-1350-7.Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMP’s), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host- and bacterial- cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with antimicrobial peptides can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, S. mutans, S. epidermidis, and E. coli. In biological interactions such as occurs on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to cover the implant site and tailor it to a desirable bioactivity

    Discrete fractional Fourier transform

    Get PDF
    We propose and consolidate a definition of the discrete fractional Fourier transform which generalizes the discrete Fourier transform (DFT) in the same sense that the continuous fractional Fourier transform (FRT) generalizes the continuous ordinary Fourier Transform. This definition is based on a particular set of eigenvectors of the DFF which constitutes the discrete counterpart of the set of Hermite-Gaussian functions. The fact that this definition satisfies all the desirable properties expected of the discrete FRT, supports our confidence that it will be accepted as the definitive definition of this transform

    Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design

    Get PDF
    Surgical site infection is a common cause of post-operative morbidity, often leading to implant loosening, ultimately requiring revision surgery, increased costs and worse surgical outcomes. Since implant failure starts at the implant surface, creating and controlling the bio-material interface will play a critical role in reducing infection while improving host cell-to-implant interaction. Here, we engineered a biomimetic interface based upon a chimeric peptide that incorporates a titanium binding peptide (TiBP) with an antimicrobial peptide (AMP) into a single molecule to direct binding to the implant surface and deliver an antimicrobial activity against S. mutans and S. epidermidis, two bacteria which are linked with clinical implant infections. To optimize antimicrobial activity, we investigated the design of the spacer domain separating the two functional domains of the chimeric peptide. Lengthening and changing the amino acid composition of the spacer resulted in an improvement of minimum inhibitory concentration by a three-fold against S. mutans. Surfaces coated with the chimeric peptide reduced dramatically the number of bacteria, with up to a nine-fold reduction for S. mutans and a 48-fold reduction for S. epidermidis. Ab initio predictions of antimicrobial activity based on structural features were confirmed. Host cell attachment and viability at the biomimetic interface were also improved compared to the untreated implant surface. Biomimetic interfaces formed with this chimeric peptide offer interminable potential by coupling antimicrobial and improved host cell responses to implantable titanium materials, and this peptide based approach can be extended to various biomaterials surfaces

    Linear canonical transformations and quantum phase:a unified canonical and algebraic approach

    Get PDF
    The algebra of generalized linear quantum canonical transformations is examined in the prespective of Schwinger's unitary-canonical basis. Formulation of the quantum phase problem within the theory of quantum canonical transformations and in particular with the generalized quantum action-angle phase space formalism is established and it is shown that the conceptual foundation of the quantum phase problem lies within the algebraic properties of the quantum canonical transformations in the quantum phase space. The representations of the Wigner function in the generalized action-angle unitary operator pair for certain Hamiltonian systems with the dynamical symmetry are examined. This generalized canonical formalism is applied to the quantum harmonic oscillator to examine the properties of the unitary quantum phase operator as well as the action-angle Wigner function.Comment: 19 pages, no figure
    corecore