
07 January 2022

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

BICP: Block-incremental CP decomposition with update sensitive refinement

Publisher:

Published version:

DOI:10.1145/2983323.2983717

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

Association for Computing Machinery

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1788087 since 2021-04-29T18:44:54Z

BICP: Block-Incremental CP Decomposition with Update
Sensitive Refinement

ABSTRACT
With many applications relying on multi-dimensional
datasets for decision making, tensors (or multi-dimensional
arrays) are emerging as a popular data representation to
support diverse types of data, such as sensor streams and
social networks. Consequently, tensor decomposition forms
the basis for many data analysis and knowledge discovery
tasks, from clustering, trend detection, anomaly detection,
to correlation analysis. In applications where data evolves
over time and the tensor-based analysis results need to be
continuously maintained, re-computation of the whole ten-
sor decomposition with each update will cause high com-
putational costs and incur large memory overheads. In
this paper, we propose a two-phase block-incremental CP-
based tensor decomposition technique, BICP, that efficiently
and effectively maintains tensor decomposition results in the
presence of dynamically evolving tensor data. In its first
phase, instead of repeatedly conducting ALS on each sub-
tensor, BICP only revises the decompositions of the tensors
that contain updated data. Moreover, when updates are
relatively small with respect to the block size, BICP relies
on a incremental factor tracking to avoid re-decomposition
the updated sub-tensor. In its second phase, BICP lim-
its the block-centric refinement process to only those blocks
that are critical given the update. Experiment results show
that the proposed method significantly reduces the execu-
tion time while assuring high accuracy.

1. INTRODUCTION
With many applications relying on multi-dimensional

datasets for decision making, tensors (or multi-dimensional
arrays) are emerging as a popular data representation [35,
17, 14, 16, 19]. Matrix-shaped data (i.e., 2-mode tensors)
are often analyzed for their latent semantics through matrix
decomposition operations, such as singular value decompo-
sition (SVD). The corresponding analysis operation which
applies to tensors with more than two modes is known as
tensor decomposition, such as CP (Figure 1) and Tucker de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

!!"

!#

!$

%
&

&

&

'
$

'#

'"

&

&

&

!"
!#

! $

Figure 1: CP-decomposition of a 3-mode tensor [7,
12] results in a diagonal core and three factor ma-
trices

compositions [36]. These form the basis for many data anal-
ysis and knowledge discovery tasks, from clustering, trend
and anomaly detection [17] to correlation analysis [30].

A critical challenge for tensor based analysis is its compu-
tational complexity and decomposition can be a bottleneck
in some applications. Especially when data evolves over time
and the tensor-based analysis results need to be continuously
maintained, re-decomposition of the whole tensor with each
and every update will incur high computational costs. In
this paper, we propose a two-phase block-incremental ten-
sor decomposition technique that efficiently and effectively
maintains tensor decomposition results in the presence of
dynamically evolving tensor data.

1.1 Key Observations
[20] and [25] presented a block-based alternative to ten-

sor decomposition: (a) in their first phase, these partition
the input tensor into pieces and obtain (potentially in paral-
lel) decompositions for each piece; (b) in the second phase,
they stitch the partial decomposition results into a combined
decomposition through an iterative block-centric refinement
process. In this paper, we argue that, when extended with
methods to eliminate waste and support reuse, block-based
tensor decomposition can provide an effective framework for
incremental tensor analysis. We use the example in Figure 2
to illustrate this:

• Let us assume that all the updates on the tensor are
limited to the blue block: since in Phase 1, each block
is decomposed separately, in this situation, there would
not be a need to recompute other blocks’ decomposi-
tions.

• In fact, if the update on the blue block is rela-
tively small, we may be able to completely avoid re-
decomposing this block and, instead, we can maintain
the sub-tensor incrementally.

!"
!"

!"

!"#

!"
!"

!"

!$#

!"
!"

!"

!%#

&"#

&$#

&%#

'&"(&$(&%)#

*"
&"#

*$
&$#

* %
&% #

Figure 2: [20, 25] divide a given tensor into
blocks/sub-tensors; decompose each of these sub-
tensors separately, and then stitch these together
through an iterative refinement process, where a
given sub-tensor decomposition is refined by lever-
aging decompositions of other sub-tensors aligned
with the block along different modes

• Furthermore, in Phase 2 of the process, we may be able
to limit the refinement process only to those blocks
that are aligned with the updated block along the dif-
ferent modes to save significant time, while preserving
accuracy (in fact, as we will see in this paper, a subset
of those blocks may often be sufficient).

1.2 Contributions: Two-Phase Block-
Incremental Tensor Decomposition

Let us assume that we are given a tensor, X , with decom-
position, X̊ , and an update, ∆, on the tensor. X̊ . Based on
the above observations, in this paper, we present a two-phase
block-based incremental CP tensor decomposition (BICP)
approach which significantly reduces computational cost of
obtaining the decomposition of the updated tensor, while
maintaining high accuracy:

• Update-Sensitive Block Maintenance in First
Phase: In its first phase of the process, instead of
repeatedly conducting ALS on each sub-tensor, BICP
only revises the decompositions of the tensors that
contain updated data. Moreover, when updates are
relatively small with respect to the block size, BICP
relies on an incremental factor tracking to avoid re-
decomposition of the updated sub-tensor.

• Update-Sensitive Refinement in the Second
Phase: In its second phase, BICP leverages (automat-
ically extracted) metadata about how decompositions
of the sub-tensors impact each other’s decompositions
and a block-centric iterative refinement to help achieve
high efficiency and accuracy:

– BICP limits the refinement process to only those
blocks that are aligned with the updated block.

– We propose a measure of “impact likelihood” and
use this to reduce redundant work: We

∗ identify sub-tensors that do not need to be re-
fined and (probabilistically) prune them from
further consideration, and/or

∗ assign different ranks to different sub-tensors
according to their impact likelihood score:
naturally, the larger the impact likelihood of
a sub-tensor, the larger target rank BICP as-
signs to that tensor.

Intuitively, the above process enables BICP to as-
sign appropriate levels of accuracy to sub-tensors
in a way that reflects the distribution of the up-
dates on the whole tensor. This ensures that the
decomposition process is fast and accurate.

In the next section, we present the related work. In
Section 3, we present the relevant background, notations
and formalize the problem. In Section 4, we introduce
the proposed two-phase block-incremental tensor decompo-
sition technique. Experiment results, reported in Section 5,
show that the proposed algorithms significantly reduce the
amount of execution time while assuring the accuracy. We
conclude the paper in Section 6.

2. RELATED WORK
Tensor based representations of data and tensor decom-

positions (especially the two widely used decompositions
CP [12] and Tucker [36]) are proven to be effective in multi-
aspect data analysis for capturing high-order structures in
multi-dimensional data [16, 34]. For example, in [28], au-
thors analyze an email social network using tensor decom-
position. In [1], authors introduce a tensor-based framework
to identify epileptic seizures and, in [34], authors use tensors
to incorporate user click information to improve web search.
[11] shows that decomposition of fMRI data can reproduce
well known results in neurology for differentiating healthy
and Alzheimer affected individuals.

There are two widely used toolboxes: the Tensor Toolbox
for Matlab [3] (for sparse tensors) and N-way Toolbox for
Matlab [2] (for dense tensors). Since tensor decomposition
is a costly process for both sparse and dense tensors, vari-
ous optimization and parallel algorithms and systems have
been developed. [17] proposed a memory-efficient Tucker
(MET) decomposition to address the intermediate blowup
problem in Tucker decomposition by updating a subset of
the modes at a time. [35] proposed MACH, a randomized
algorithm (based on randomized sampling) that speedups
the Tucker decomposition while providing accuracy guaran-
tees. Recently, [24] proposed a fast approach for CP that
decomposes an unfolded tensor in lower order, instead of
directly factorizing the high order tensor. TensorDB [15]
extends a block-based array store to store and retrieve data
and introduces optimization schemes for efficient CP-ALS
based in-database tensor decompositions. [19] proposed a
Personalized Tensor Decomposition (PTD) mechanism that
boosts accuracy and reduces execution time in situations
where the user’s interest is not uniformly distributed across
the whole tensor. Parallelization of tensor decompositions
have been proposed for different platforms [4, 10, 33]. In [26,
31], authors propose PARCUBE, a sampling based, paral-
lel and sparsity promoting, approximate PARAFAC decom-
position scheme. [13] proposed HaTen2, a massively dis-
tributed MapReduce based implementation of PARAFAC
and Tucker running on the MapReduce platform.

Due to the intrinsic computational complexity of tensor
decomposition, efficient incremental tensor decomposition
is necessary in many applications such as video tracking,
foreground detection, and face recognition [18, 21, 22, 29].

[23] presented a pioneering work on updating a tensor with
PARAFAC decomposition, and applied it to MIMO radar
application. [32] proposed tensor update algorithms: Dy-
namic Tensor Analysis (DTA), Streaming Tensor Analysis
(STA), and Window-based Tensor Analysis (WTA) where
DTA obtains an update factor matrix by extracting leading
eigenvectors of incrementally maintained covariance matrix
in each mode. STA is a fast algorithm of an approximate
DTA by SPIRIT algorithm and WTA combines the idea of
sliding windows with DTA. [22] considered the third-order
tensor update and downdate problems when a new arrival
of the data forms a matrix.

3. BACKGROUND AND NOTATIONS
We now present the relevant background and notations.

3.1 Tensors and Tensor Decompositions
Tensors are generalizations of matrices: while a matrix is

essentially a 2-mode array, a tensor is an array of larger num-
ber of modes. Intuitively, the tensor model maps a schema
with N attributes to an N-modal array (where each poten-
tial tuple is a tensor cell).

The two most popular tensor decomposition algorithms
are the Tucker [36] and the CANDECOMP/PARAFAC
(CP) [12] decompositions. Intuitively, both generalize sin-
gular value matrix decomposition (SVD) to tensors.

3.2 CP Decomposition
As shown in Figure 1, given a tensor X , CP factorizes

the tensor into F component matrices (where F is a user
supplied non-zero integer value also referred to as the rank
of the decomposition). For the simplicity of the discussion,
let us consider a 3-mode tensor X ∈ R

I×J×K. CP would
decompose X into X̊ consisting of three matrices A,B, and
C, such that

X ≈ X̃ = recombine[A,B,C] ≡
F
∑

f=1

af ◦ bf ◦ cf ,

where af ∈ R
I, bf ∈ R

J and cf ∈ R
K. The factor matrices

A, B, C are the combinations of the rank-one component
vectors into matrices; e.g., A = [a1 a2 · · · aF].

The alternating least squares (ALS) method is often used
for obtaining tensor decomposition: at each iteration, ALS
estimates one factor matrix while maintaining other matri-
ces fixed; this process is repeated for each factor matrix
associated to the modes of the input tensor until conver-
gence condition is reached. Since tensor decomposition is
an approximation algorithm, the new tensor X̃ obtained by
recomposing the factor matrices A, B, and C is often dif-
ferent from the input tensor, X . The accuracy of the de-
composition is often measured by considering the Frobenius
norm of the difference tensor:

accuracy(X , X̃) = 1− error(X , X̃) = 1−

(

‖X̃ −X‖

‖X‖

)

.

3.3 Block-based CP Decomposition
As discussed previously, block-based CP decomposition

techniques partition the given tensor into blocks or sub-
tensors, initially decompose each block independently, and
then iteratively combine these decompositions into a final
decomposition. Let us consider an N-mode tensor X ∈
R

I1×I2×...×IN , partitioned into a set (or grid) of sub-tensors

Algorithm 1 Two-Phase Block-based CP Decomp. [20]

Input: original tensor, X ; partitioning pattern, K; and decom-
position rank, F

Output: CP tensor decomposition X̊

1. Phase 1: for all ~k ∈ K

• decompose X~k
into U

(1)
~k

, U
(2)
~k

, . . ., U
(N)
~k

2. Phase 2: repeat for each ~k = [k1, . . . , kN] ∈ K

(a) for each mode i = 1 to N

i. refine A
(i)
(ki)

using U
(i)
[∗,...,∗,ki,∗,...,∗]

, for each

block X [∗,...,∗,ki,∗,...,∗]
; more specifically,

• compute T
(i)
(ki)

, which involves the use of

U
(i)
[∗,...,∗,ki,∗,...,∗]

(i.e. the mode-i factors of

X [∗,...,∗,ki,∗,...,∗]
)

• revise P [∗,...,∗,ki,∗,...,∗]
and Q[∗,...,∗,ki,∗,...,∗]

using U
(i)
[∗,...,∗,ki,∗,...,∗]

and A
(i)
(ki)

• compute S
(i)
(ki)

using the above

• refine A
(i)
(ki)

using the above

ii. for all ~l = [∗, . . . , ∗, ki, ∗, . . . , ∗] ∈ K

• refine P~l
and Q~l

using

– U
(i)
~l

and A
(i)
(ki)

until stopping condition

3. Return X̊

X = {X~k | ~k ∈ K} where K is the set of sub-tensor indexes.
Without loss of generality, let us assume that K partitions
the mode i into Ki equal partitions; i.e., |K| =

∏N

i=1 Ki.
Let us also assume that we are given a target decomposition
rank, F , for the tensor X . Let us further assume that each
sub-tensor in X has already been decomposed with target

rank F and let U
(i) = {U

(i)
~k

| ~k ∈ K} denote the set of

F -rank sub-factors1 corresponding to the sub-tensors in X

along mode i. In other words, for each X~k, we have

X~k ≈ I ×1 U
(1)
~k

×2 U
(2)
~k

· · · ×N U
(N)
~k

, (1)

where I is the N-mode F×F×. . .×F identity tensor, where
the diagonal entries are all 1s and the rest are all 0s.

Given these, [25] presents an iterative improvement algo-
rithm for composing these initial sub-factors into the full
F -rank factors, A(i) (each one along one mode), for the in-
put tensor, X . The outline of this block based process is
as follows: Let us partition each factor A(i) into Ki parts
corresponding to the block boundaries along mode i:

A
(i) = [A

(i)T
(1) A

(i)T
(2) ...A

(i)T
(Ki)

]T .

Given this partitioning, each sub-tensor X~k,
~k =

[k1, . . . , ki, . . . , kN] ∈ K can be described in terms of these
sub-factors (Figure 2):

X~k ≈ I ×1 A
(1)

(k1)
×2 A

(2)

(k2)
· · · ×N A

(N)

(kN)
(2)

Moreover, the current estimate of the sub-factor A
(i)
(ki)

can

be revised using the following refinement rule:

1If the sub-tensor is empty, then the factors are 0 matrices of the
appropriate size.

!

!

Phase 1: Decompose
incremental sub-tensors X1

!!!
!! !"

!!
!
!

!!
!
!

!!
!!

!

!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

Phase 2: Basic incremental tensor
decomposition based on block-

centric manner

!!
!
!!!!!

!
!!!
!
! !!

!!

!

!

!!
!
!!! !!

!!

!

!

!!!
!
!

Update of !!
! with revised factors

!!
!! ! ! !!!!!!!! ! ! !!!!!!!!!!!!!!!

N sub-factors of ! aligned with !! N sub-factors of ! aligned with !!

Mode-1 Aligned: X1, X2, X5, X6

Mode-2 Aligned: X1, X3, X5, X7

Mode-2 Aligned: X1, X2, X3, X4

Figure 3: Illustration of basic method of incremen-
tal block-based tensor decomposition(the notation is
introduced in Section 3.2)

A
(i)

(ki)
←− T

(i)

(ki)

(

S
(i)

(ki)

)−1
, where

T
(i)

(ki)
=

∑

~l∈{[∗,...,∗,ki,∗,...,∗]}

U
(i)

~l

(

P~l
⊘ (U

(i)T

~l
A

(i)

(ki)
)
)

S
(i)

(ki)
=

∑

~l∈{[∗,...,∗,ki,∗,...,∗]}

Q~l
⊘

(

A
(i)T

(ki)
A

(i)

(ki)

)

.

Above, given ~l = [l1, l2, . . . , lN], we have P~l =

⊛
N
h=1(U

(h)T
~l

A
(h)
(lh)) and Q~l = ⊛

N
h=1(A

(h)T
(lh) A

(h)
(lh)). Here, ⊛

denotes the Hadamart product and ⊘ denotes the element-
wise division operation. [20] leverages this refinement rule to
develop a two-phase block-centric decomposition algorithm
(Algorithm 1). While the precise derivation of the above
refinement rules and the details of the algorithm are not
critical for our discussion (and is beyond the scope of this
paper), as we see in the next section, this two-phase frame-
work enables us to develop an efficient block-based incre-
mental tensor decomposition process.

4. BLOCK-BASED INCREMENTAL CP
(BICP) DECOMPOSITION

Let us assume that we are given a tensor, X , with de-
composition, X̊ , and an update, ∆, on the tensor. In this
section, we propose a two-phase block-incremental CP ten-
sor decomposition (BICP) approach to obtain the decom-
position of the updated tensor with high efficiency, while
maintaining high accuracy. Below, we formalize the key ob-
servations underlying the proposed method:

• Observation #1 (Update Sensitive Decompositions
in Phase 1): As described in the previous section, in Phase

1 each sub-tensor X~k, where
~k ∈ K such that K is a par-

titioning pattern, needs to be decomposed into U
(1)
~k

, U
(2)
~k

,

. . ., U
(N)
~k

. The fact that each sub-tensor X~k can be de-

composed independently from the others means that any
updates on the values of one sub-tensor will have no effect
on other sub-tensors’ Phase 1 decompositions. Therefore, to
improve efficiency, in this phase only sub-tensors which have
been modified need to be re-decomposed.

This is visualized in Figure 3: In this example, the given
tensor X is partitioned into eight sub-tensors, X 1 through
X 8. For this example, let us assume that all the updates are

Algorithm 2 The outline of the basic block-centric incre-
mental tensor decomposition algorithm

Input: original tensor, X ; tensor block partitioning pattern, K;
rank, F , block decomposition, X̊ = 〈U, P,Q,A〉, of X ;
and a tensor update, ∆.

Output: CP tensor decomposition X̊∆ of the updated tensor

1. Let T be the set of sub-tensors containing the update ∆

2. Phase 1: for all ~t ∈ T

• decompose X~t into U
(1)
~t

, U
(2)
~t

, . . ., U
(N)
~t

3. Phase 2:

(a) R =
⋃

~t∈T direct impact(X~t)

(b) Repeat for ~r ∈ R

i. for each mode 1 ≤ m ≤ N for which ~r is aligned
with any ~t ∈ T
A. update A

(m)
(rm)

using U
(m)
[∗,...,∗,rm,∗,...,∗]

, for

each block X [∗,...,∗,rm,∗,...,∗] ∈ R; more
specifically,

• compute T
(m)
(rm)

, which involves the use of

U
(m)
[∗,...,∗,rm,∗,...,∗]

(i.e. the mode-i factors

of X [∗,...,∗,rm,∗,...,∗])

• revise P [∗,...,∗,rm,∗,...,∗] and

Q[∗,...,∗,rm,∗,...,∗] using U
(m)
[∗,...,∗,rm,∗,...,∗]

and A
(m)
(rm)

• compute S
(m)
(rm)

using the above

• update A
(m)
(rm)

using the above

B. for all ~l = [∗, . . . , ∗, ri, ∗, . . . , ∗] ∈ R

• update P~l
and Q~l

using

– U
(m)
~l

and A
(m)
(rm)

until stopping condition

4. Return X̊∆

contained in sub-tensor X 1. Instead of conducting CP de-
composition on all 8 sub-tensors, only sub-tensor X 1 needs

to be decomposed to recompute sub-factors U
(1)
(1), U

(2)
(1), U

(3)
(1)

of sub-tensor X 1. Sub-factors of all other sub-tensors can
be inherited from the original tensor decomposition since
there are no updates in other sub-tensors. In fact, as we
later see in Section 4.1, under certain conditions, we can
further save processing, by revising the decomposition of
X 1 through a tracking algorithm rather than executing a
full re-decomposition of the sub-tensor.

• Observation #2 (Update Sensitive Refinement in
Phase 2): A close look at Phase 2 of Algorithm 1 shows
that, the refinement of a block X~k involves the refinements

of its related factors A
(i)

(ki)
for each mode i = 1 to N :

X~k ≈ A
(1)

(k1)
×2 A

(2)

(k2)
· · · ×N A

(N)

(kN)
.

A
(i)

(ki)
, in turn, depends on the sub-factors of the sub-tensors

contributing to its refinement . Given a sub-tensor, X~k, we
say that those sub-tensors that are aligned with any of the
modes of X~k have direct impact on X~k:

direct impact(X~k) =

{

X~j(6= X~k)

∣

∣

∣

∣

∃1≤i≤N ki = ji

}

.

This is visualized in Figures 2 and 3. Let X 1 be the mod-
ified sub-tensor in Figure 3: In this example, X 2, X 5 and
X 6 are aligned with X 1 on mode-1; X 3, X 5, and X 7 are

Algorithm 3 Incremental factor tracking

Input: the update on the sub-tensor, ∆t; existing sub-tensor de-
composition factors U1 through UN ; corresponding en-
ergy matrices S1 through SN ; decomposition rank F ; and
forgetting factor λ

Output: updated sub-tensor decomposition factors U ′
1 through

U ′
N ; revised energy matrices S′1 through S′N

1. Let C be update-critical fibers of ∆t, with highest energy

2. for all modes m = 1 to N

(a) ∆m = matricize(∆t, m)

(b) Obtain energy matrix Sm for Um {compute or copy
from previous time step}

(c) for all columns j = 1 to Im

• if the column j of the matricization ∆m corre-
sponds to a fiber in C

i. Initialize the update vector x1 := ∆m[j]

ii. for each basis vector i = 1 to rank F

– yi := Um[i]Txi {project onto basis vector}

– S′m[i]← λS[i] + y2i {revise energy}

– ei := xi−yiUm[i] {compute error}

– U ′
m[i] ← Um[i] + 1

S′
m[i]

yiei {revise basis

vector}

– xi+1 := xi−yiU
′
m[i] {revise the update

vector to reflect the revised basis vector}

aligned with X 1 on mode-2; X 2, X 3, and X 4 are aligned
with X 1 on mode-3. We argue that identifying such direct
relationships among sub-tensors and leveraging these to ma-
nipulate the refinement process can help significantly reduce
the redundant work, while maintaining high accuracy.

• Outline of Basic BICP: The outline of the basic block
based incremental tensor decomposition algorithm is pre-
sented in Algorithm 2 and visualized in Figure 3. This basic
outline, however, does not include several key optimizations
on Phase 1 and Phase 2, which, as we experimentally val-
idate in Section 5, provide significant savings. We discuss
these optimizations in the rest of the paper.

4.1 Optimization #1 - Incremental Factor
Maintenance in Phase 1

The basic BICP algorithm presented in Algorithm 2 po-
tentially saves significant amount of time in its Phase 1 by
avoiding re-decomposition of sub-tensors that have not seen
any updates. Nevertheless, re-decomposing even only the
updated sub-tensors from scratch can be expensive. There-
fore, when updates to the sub-tensors are small, we can in-
stead revise the existing sub-factors directly, rather than
re-decomposing the corresponding sub-tensors.

For this purpose, we note that the factor matrices of a ten-
sor Y can be considered as factor matrices of Y ’s matriciza-
tions (the HOSVD [6] algorithm relies on this observation
to decompose a given tensor to its factors). Consequently,
we can maintain the sub-factors by leveraging incremental
matrix decomposition algorithms, like SPIRIT [27] or LWI-
SVD [8]. Given a new row vector, x, SPIRIT first finds
x’s projection y, on the space defined by the current factor
U , by projecting x onto U . Given this projection, an en-
ergy matrix, S , which describes how much of the energy of
the original matrix is captured by each column of the factor
matrix, and a “forgetting factor” to control the speed with

!

Sub-Tensor Refinement Impact
Graph (SRI)

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

SRI Graph

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!!!

!

!

!!

!"#$!!

!"#$!!

!"#$!!

!!!!!!!

!! "#$%!&'(&!%#)!

#!*&+(%,-!!

".(.!!!"!+)!

#))/$+#,&'!

*+,%!!!"!

Figure 4: Illustration of the sub-tensor refinement
impact (SRI) graph construction

which the factor is revised, it then revises the factor, U in
a way that accounts best for y. Intuitively, the larger the
error between the new row and its description by the old
factor matrix U , the more U is revised.

The STA [32] algorithm applies this idea to maintain fac-
tors of an evolving tensor. In this paper, however, we note
that tracking the factor matrices of the whole tensor can
have negative effects on accuracy and efficiency. In particu-
lar, as we experimentally validate in Section 5, tracking the
factors of the whole tensor introduces unnecessary reduc-
tions in accuracy. In contrast, maintaining factor matrices
of an updated sub-tensor by applying the tracking process
on the matricizations of that sub-tensor (as shown in Al-
gorithm 3) significantly boosts accuracy. Moreover, as we
also experimentally validate in Section 5, focusing only on
matricization columns that carry most of the energy of the
update matrix, ∆t, (see Steps 1 and 2c of Algorithm 3),
not only significantly improves execution time, but can also
significantly improve accuracy, when updates are clustered
(e.g. on a single fiber of the sub-tensor).

4.2 Optimization #2- Reducing Redundant
Refinements in Phase 2

The basic BICP method presented in Algorithm 2 po-
tentially saves significant amount of time in its Phase 2 by
focusing the refinements on the factors that are directly rel-
evant to the updated sub-tensor. In this section, we provide
several optimizations that help achieve even higher efficien-
cies, while maintaining high accuracy.

As we have discussed earlier in Section 4, during the re-
finement process of Phase 2, those sub-tensors that have di-
rect refinement relationships with the updated sub-tensors
are critical to the refinement process. However, since the
refinement process is iterative, sub-tensors that are not di-
rectly related to the updated sub-tensor may also become
affected during the further stages of the refinement process.
Our key observation is that if we could quantify how much
an update on a sub-tensor impacts sub-factors on other sub-
tensors, then we could use this to optimize Phase 2.

4.2.1 Update Sensitive Refinement
Given an update, ∆ on tensor X , our second BICP opti-

mization assigns an update-sensitive impact score, I∆(X~k),

to each sub-tensor, X~k, and leverages this impact score to
regulate the refinement process to eliminate redundant work:

• Optimization 2-I: Intuitively, if a sub-tensor has a low
impact score, its decomposition is minimally affected
given the update, ∆. Therefore, those sub-tensors with
very low impact factors can be completely ignored in
the refinement process and their sub-factors can be left
as they are without any refinement.

• Optimization 2-P: While optimization 2-I can poten-
tially save a lot of redundant work, completely ignor-
ing low-impact tensors may be somewhat drastic. One
alternative, which does not have an as drastic an im-
pact as ignoring sub-tensors, is to associate a refine-
ment probability to sub-tensors based on their impact
scores. In particular, instead of completely ignoring
those sub-tensors with low impact factors, we assigned
them an update probability, 0 < prob update < 1.
Consequently, while the factors of sub-tensors with
high impact scores are refined at every iteration of the
refinement process, factors of sub-tensors with low im-
pact scores have lesser probabilities of refinement and,
thus, do not get refined at every iteration of Phase 2.

• Optimization 2-R: Note that optimization 2-I and 2-P
are only applicable to sub-tensors with very low impact
scores. For the rest of the sub-tensors, we need other
optimizations to reduce refinement cost. One way to
achieve this is to assign different ranks to high-impact
sub-tensors according to their impact scores: naturally,
the higher the target rank is, the more accurate the
decomposition of the sub-tensor. Therefore, we assign
lower ranks to the sub-tensors with relatively lower
impact scores to save work, while maintaining accuracy
(as verified in Section 5). We achieve this by adjusting
the decomposition rank, F~k of X~k, as a function of the
corresponding tensor’s update sensitive impact score:

F~k =

⌈

F ×
Iδ(X~k)

max~h{Iδ(X~h)}

⌉

.

Intuitively, this formula sets the decomposition rank
of the sub-tensor with the highest impact score rela-
tive to the given update, ∆, to F ; other sub-tensors
are assigned progressively smaller ranks (potentially
all the way down to 1)2 based on their impacts scores.
Once the new ranks are computed, we obtain new U~(k)

factors with partial ranks F~k for X~k and refine these
incrementally in Phase 2.

Next, we discuss how to compute the impact scores used by
the three optimization strategies presented above.

4.2.2 Computing Sub-Tensor Impact Scores Relative
to the Tensor Updates

Let us be given an input tensor, X , an update, ∆, in this
tensor, and a partitioning pattern, K, that splits X into sub-
tensors. The optimized BICP algorithm, BICPopt, needs to
associate an impact score, I∆(X~k), to each sub-tensor, X~k,

where ~k ∈ K, that regulates the refinement process. For this
purpose, we first construct a sub-tensor refinement impact
(SRI) graph that reflects how refinements in each sub-tensor
impact other sub-tensors in Phase 2.
2It is trivial to modify this equation such that the smallest rank
will correspond to a user provided lower bound, Fmin, when such
a lower bound is provided by the user.

Sub-Tensor Refinement Impact (SRI) Graph.
The key goal of the SRI graph is to account for propaga-

tion of refinements along the tensor during the refinement
process in Phase 2. Let X be a tensor partitioned into a

set (or grid) of sub-tensors X = {X~k | ~k ∈ K} as specified
in Section 3.3. The corresponding SRI graph is a directed,
weighted graph, G(V,E,w()), where

• for each X~k ∈ X , there exists a corresponding v~k ∈ V ,

• for each X~l ∈ direct impact(X~k), there exists a di-
rected edge v~l → v~k in E (see Section 4), and

• w() is a weight function, where w(v~l → v~k) quantifies
the impact of the decomposition of X~l on the decom-
position of X~k.

Intuitively, if the two sub-tensors are similarly distributed
along the modes that they share, then they are likely to have
high impacts on each other’s decomposition; in contrast, if
they are dissimilar, their impacts on each other will also be
minimal. In other words, the weight of the edge from v~j to
v~l should reflect the alignment between the sub-tensors X~j

and X~l. More formally, let X be a tensor partitioned into a

set (or grid) of sub-tensors X = {X~k | ~k ∈ K}. Let also X~j

and X~l be two sub-tensors in X, such that

• ~j = [kj1 , kj2 , . . . , kjN] and

• ~l = [kl1 , kl2 , . . . , klN].

Let, A = {h | kjh = klh} be the set of modes along which
the two sub-tensors are aligned and let R be the remaining
modes. We define the value alignment, align(X~j ,X~l, A),
between X~j and X~l as

align(X~j ,X~l, A) = cos(~c~j(A),~c~l(A)),

where cos() is the cosine similarity function and the vector
~c~j(A) captures the value distribution of the tensor X~j along
the modes in A which compresses the tensor to a matrix
along mode A by calculating the standard Frobenius norm.
Given this, we set the edge weights of the edge (v~j → v~l) ∈ E
in the sub-tensor impact graph as follows:

w1(v~j → v~l) =
align(X~j ,X~l)

∑

(v~j→v~m)∈E align(X~j ,X ~m)
.

Example 1. We visualize this in Figure 4. Here, tensor
X is partitioned into eight sub-tensors X 1 to X 8, and sub-
tensors X 1, X 2 and X 6 contain the update to the tensor.

• Firstly, we build the Sub-Tensor refinement im-
pact graph and assign weight using equation in Sec-
tion 4.2.2.

• Then, we calculate the impact score using Personalized
PageRank(PPR) Equation introduced in Section 4.2.2.
When calculating PPR score, seed set are the nodes of
updated sub-tensors: X 1 , X 2 , and X 6.

• After we obtain the impact scores, we assign the de-
composition ranks according to their impact score using
the method in Section 4.2 Optimization 2-R.

Computing the Refinement Impact Scores.
The edges on the sub-tensor refinement impact (SRI)

graph, G, describe the refinement interdependencies among
the sub-tensors, relative to the given update, ∆, on ten-
sor, X sub-tensors. We leverage this graph to measure how

Algorithm 4 Optimized block-centric incremental tensor
decomposition
Input: original tensor, X ; tensor block partitioning pattern, K;

rank, F , block decomposition, X̊ = 〈U, P,Q,A〉, of X ; a
tensor update, ∆; and optimization parameters: optimiza-
tion strategy (2-I, 2-P, or 2-R), the percentage, L% of the
low impact sub-tensors for which refinement work is reduced,
and for strategy 2-P, the probability, plow, of updates for low
impact sub-tensors.

Output: CP tensor decomposition X̊∆ of the updated tensor

1. Let T be the set of sub-tensors containing the update ∆

2. Phase 1: for all ~t ∈ T

• Apply tensor tracking method Algorithm 3 for ~t

3. Phase 2:

(a) R =
⋃

~t∈T direct impact(X~t)

(b) Get refinement impact score, I∆(~r), for all ~r ∈ R

(c) For the lowest L% of sub-tensors ~r ∈ R,

i. F~r = F

ii. if 2-I or 2-R, then p~r = 0.0

iii. if 2-P, then p~r = plow

(d) For the highest (100− L)% of sub-tensors in ~r ∈ R,

i. p~r = 1.0

ii. if 2-I or 2-P, then F~r = F

iii. if 2-R, then

• F~r = F ×
PPR(X~r)

max{PPR(R)}

• Truncate U~r and P~r according to F~r

(e) Repeat for ~r ∈ R

• With probability p~r do

i. for each mode 1 ≤ m ≤ N for which ~r is aligned
with any ~t ∈ T

A. update A
(m)

(rm)
using U

(m)

[∗,...,∗,rm,∗,...,∗]
, for

each block X [∗,...,∗,rm,∗,...,∗] ∈ R; more
specifically,

– compute T
(m)

(rm)
, which involves the use of

U
(m)

[∗,...,∗,rm,∗,...,∗]
(i.e. the mode-i factors

of X [∗,...,∗,rm,∗,...,∗])

– revise P [∗,...,∗,rm,∗,...,∗]

and Q[∗,...,∗,rm,∗,...,∗] using

U
(m)

[∗,...,∗,rm,∗,...,∗]
and A

(m)

(rm)

– compute S
(m)

(rm)

– update A
(m)

(rm)

B. for all ~l = [∗, . . . , ∗, ri, ∗, . . . , ∗] ∈ R

– update P~l
and Q~l

using

∗ U
(m)

~l
and A

(m)

(rm)

until stopping condition

4. Return X̊∆

refinements propagate within G including both direct and
indirect refinements. In particular, we rely on personalized
PageRank (PPR [5, 9]) to measure sub-tensor relatedness.
PPR encodes the structure of the graph in the form of a
transition matrix of a stochastic process from which the sig-
nificances of the nodes in the graph can be inferred. PPR
complements this with a seed node set, S ⊆ V , which serves
as the context: each node, vi in the graph is associated with
a score based on its positions in the graph relative to this
seed set (i.e., how many paths there are between vi and the
seed set and how short these paths are). In particular, the
PPR score ~p[i], of vi is obtained by solving

~p = (1− β)TG ~p+ β~s,

where TG denotes the transition matrix corresponding to
the graph G (and the underlying edge weights) and ~s is a
re-seeding vector such that if vi ∈ S, then ~s[i] = 1

‖S‖
and

~s[i] = 0, otherwise. Correspondingly, those nodes that are
close to the seed nodes over a large number of paths obtain
large scores, whereas those that are poorly connected to the
nodes in S receive small scores.

We note that the iterative nature of the random-walk pro-
cess underlying PPR fits well with how the effects of refine-
ments propagate during the iterative ALS process. In par-
ticular, given an update ∆ and the corresponding set, T , of
updated sub-tensors, we set the seed vector ~s such that the
non-zero entries correspond to sub-tensors in T and solve
the above equation for vector ~p. Given this, we then com-

pute the impact score, I∆(X~k) as I∆(X~k) = ~p[~k]. Note that,
since in general, the number of partitions is small and is in-
dependent of the size of the input tensor, the cost of the PPR
computation to compute impact scores is negligible next to
the cost of tensor decomposition.

4.3 Optimized BICP Algorithm, BICP opt

Algorithm 4 presents the optimized BICP algorithm,
which combines the optimizations presented above. In the
next section, we experimentally investigate the performances
of these optimizations.

5. EXPERIMENTS
In this section, we report experiment results to assess the

efficiency and effectiveness of the proposed two-phase block-
centeric approach to incremental tensor decomposition.

5.1 Experiment Setup
Data Sets. In these experiments, we used three datasets:
Epinions [37], Ciao [37], and Enron [28]. The first two
of these are comparable in terms of their sizes and se-
mantics: they are both 5000 × 5000 × 27 tensors, with
schema 〈user, item, category〉, and densities 1.089 × 10−6

and 1.06× 10−6 respectively. The Enron email data set, on
the other hand, has dimensions 5632 × 184 × 184, density
1.8× 10−4, and schema, 〈time, from, to〉.
Data Updates. We considered both clustered and dis-
tributed updates: (a) For clustered updates, we divided the
tensor into 64 blocks (using 4× 4× 4 partitioning) and ap-
plied all the updates to one of these blocks; (b) in the case of
distributed updates, we varied the percentage, B, of blocks
that are updated: B ∼ 5% (4 blocks – default), ∼ 10% (7

blocks), and ∼ 20% (13 blocks). Once the blocks are se-
lected, we randomly pick a slice on the block and update
C = 10% (default) to 30% of the fibers on this slice.
Alternative Strategies. In this section, we consider the
following strategies to maintain the tensor decomposition:
(a) the first approach (ORI) is to apply BICP with the
basic CPALS algorithm [25] for Phase 1 and the original
block-centric iterative refinement tensor decomposition pro-
cess without utilizing any incremental method for Phase 2.
In addition to this, we considered several optimizations to
BCIP, For Phase 1, there are two options: (b) to redo the
tensor decomposition for the updated sub-tensors (P1N) or
(c) to utilize incremental tracking algorithm (P1I, default).
For Phase 2, again, we have several alternatives: (d) ap-
plying Phase 2 without any refinement impact score based
optimization (P2N), (e) ignoring L% of sub-tensors with
the lowest impact scores (P2I), and (f) reducing the de-

mlsapino
Highlight

mlsapino
Highlight

!!"#

$$#

!"# "%#

&# &#

$%'#

()#
)&# &%#)%#)"#

$'%#

((#
)&# &'#)'#)"#

!"

!#"

!##"

!###"

$
%
&"

'
!
(&
)'
*
(+
"

'
!
(&
)'
*
(&
"

'
!
(&
)'
*
(%
"

'
!
(&
)'
*
('
"

,
-
.
/0
"

$
%
&"

'
!
(&
)'
*
(+
"

'
!
(&
)'
*
(&
"

'
!
(&
)'
*
(%
"

'
!
(&
)'
*
('
"

,
-
.
/0
"

$
%
&"

'
!
(&
)'
*
(+
"

'
!
(&
)'
*
(&
"

'
!
(&
)'
*
(%
"

'
!
(&
)'
*
('
"

,
-
.
/0
"

123.2" 14525.26" 758."

*
+,

-
#.
/-
01
2#

34-5677#89-0:;<=#*+,-#

(a) Execution times

!"!#

!"$#

!"%#

!"&#

!"'#

!"(#

!")#

*
+,
#

-$
.,/
-%

.0
#

-$
.,/
-%

.,#

-$
.,/
-%

.+
#

-$
.,/
-%

.-
#

1
23

45
#

*
+,
#

-$
.,/
-%

.0
#

-$
.,/
-%

.,#

-$
.,/
-%

.+
#

-$
.,/
-%

.-
#

1
23

45
#

*
+,
#

-$
.,/
-%

.0
#

-$
.,/
-%

.,#

-$
.,/
-%

.+
#

-$
.,/
-%

.-
#

1
23

45
#

67837# 69:7:37;# <:=3#

!"
#
$%
&'
$(
)*
%

+,$-.//%0((1-.(2%

(b) Decomposition accuracies

Figure 5: Comparison of (a) execution times and
(b) accuracies under the default configuration: the
proposed techniques provide several orders of gain
in execution time relative to ORI, while (unlike Whole,
they match ORI’s accuracy

composition rank of sub-tensors (P2R), or (g) using prob-
abilistic refinements for sub-tensors with low impact scores
(P2P). In these experiments, we varied L between 10% and
75% (with default set to L = 50%) and, for P2P, we var-
ied the update probability between 0.0 and 1.0, with the
default set to p = 0.1. (h) In addition to the optimization
of BCIP, we also applied incremental factor tracking (Algo-
rithm 3) to the whole tensor, as in STA [32] – in the charts,
we refer to this approach as Whole.
Evaluation Criteria. We use the measure reported in Sec-
tion 3.2 to assess decomposition accuracy. We also report
decomposition time (Phase 1, Phase 2, and total) for differ-
ent settings. In these experiments, the target decomposition
rank is set to F = 10. Unless otherwise specified, the max-
imum number of iterations in Phase 2 is set to 1000. Each
experiment was run 100 times and averages are reported.
Hardware and Software. We used a quad-core Intel(R)
Core(TM)i5-2400 CPU @ 3.10GHz machine with 8.00GB
RAM. All codes were implemented in Matlab and run using
Matlab 7.11.0 (2010b) and Tensor Toolbox Version 2.5. [3].

5.2 Discussions of the Results
We now report the results of the experiments outlined

above and present our interpretations of these results.

5.2.1 General Overview
Figure 5 compares execution times and accuracies of sev-

eral approaches. Here, ORI indicates the non=optimized
BCIP, whereas Whole indicates application of factor track-
ing to the whole tensor. The other four techniques in the
figure (P1I/P2N, P1I/P2I, P1I/P2R, P1I/P2P all correspond
to different optimizations of the proposed BICP approach,
with incremental factor tracking, P1I, in Phase 1 and four
different strategies (P2N, P2I, P2R, P2P) for Phase 2.

Firstly, a quick look at this figure shows that the two
social media data sets, Epinions and Ciao, with similar sizes

!"#$

#"!$

#!"!$

#!!"!$

#!!!"!$

#!!!!"!$

%&#'$ %&('$%&#!'$%&)!'$%&#'$ %&('$%&#!'$%&)!'$%&#'$ %&('$%&#!'$%&)!'$

*+,-+$ *./+/-+0$ 1/2-$

!
"#

$
%&
'$
()
*%

+,-'$%.%/0$(1234%!"#$%%
&5-67"48%9%:;3(<'%=">,%1?@->$*%

3#45$ 3#46$

Figure 6: Phase 1 execution time, with and without
incremental factor tracking (i.e., P1N vs P1I), as a
function of the percent of blocks with updates

!"#$%

&'"('%

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

)*+,-%./0"1234"%)*+,-%566%

7
38

9
%:
;9
<"
=%

)>?;9%*%

@A9<BCDE%7389%%

!"#$%& !"#'(&

!"!&

!")&

!"*&

!"+&

!"#&

!"(&

!",&

-)./0&123"4567"& -)./0&899&

8
::
;
5<
:=
&

8::;5<:=&&

>?67@&-*.AB&

(a) Exec. time (b) Accuracy

Figure 7: (a) Execution time and (b) accuracy – with
and without update-critical vector maintenance in
Phase 1 (Enron Data)

and densities show very similar execution time and accuracy
patterns. The figure also shows that the Enron data set also
exhibits a pattern roughly similar to the other data sets,
despite having a different size and density.

They key observation in Figure 5 is that the various op-
timizations of BCIP provide several orders of gain in exe-
cution time while matching the accuracy of non-optimized
version almost perfectly (i.e., the optimizations come with-
out significant quality penalties). In contrast, the alternative
strategy, Whole, which incrementally maintains the factors
of the whole tensor (as opposed to maintaining the factors
of its blocks) also provides execution time gains, but sees a
significant drop in its accuracy.

We next study the impact of the proposed BCIP optimiza-
tions in greater detail.

5.2.2 Evaluation of Phase-1 Optimizations
Figure 6 plots the Phase 1 execution time of BICP, with

and without incremental factor tracking, as a function of
the percent of blocks with updates. As we see in this figure,
the incremental sub-factor tracking algorithm (Algorithm 3)
provides significant gains in the execution time of Phase 1,
especially for the denser, Enron, data set. Moreover, with
Algorithm 3, the overall cost of Phase 1 stays more or less
constant independent of the number of blocks being tracked,
indicating that the process itself is very efficient and the
major cost is the time to set up the relevant data structures
in constant time.

Note that, unlike STA [32], Algorithm 3 does not con-
sider in factor maintenance all modes and all effected fibers
in all matricizations. Instead, it focuses on fibers that are
update-critical (with highest energy among the all the ef-
fected fibers). As we see in Figure 7, this not only pro-
vides significant gains in execution time, it actually leads to
a slightly better overall accuracy: since the factor matrix
tracking algorithm is imperfect, revising the factor matri-

mlsapino
Highlight

mlsapino
Highlight

mlsapino
Highlight

mlsapino
Highlight

!"

#!"

$!"

%!"

&!"

'!!"

()'!*"()+!*"()'!*"()+!*"()'!*"()+!*"

,-./-" ,01-1/-2" (13/"

!
"#

$
%&
'$
()
*%

+,$(-./0%!"#$%%
&1234"05%6%78$3'%-9:2;$:%

9$3%'$<$(;$:%'<"($*%

=>2'$%?%

=>2'$%@%

!"#$$% !"#$$% !"#&'% !"#&'% !"#$(% !"#$(%

!"#$

!"%$

&'(!)$&'*!)$&'(!)$&'*!)$&'(!)$&'*!)$

+,-.,$ +/0,0.,1$ &02.$

)
**
+
,-
*.
%

)**+,-*.%
/0-,.123%4%567,8%+9:-;7:%

97,%87<7*;7:%8<1*7=%

(a) Exec. time (b) Accuracy

Figure 8: (a) Execution time and (b) accuracy as
the ratio of the modified fibers vary

!"!#

$"!#

%!"!#

%$"!#

&!"!#

&$"!#

'(
%!
)
#

'*
++
)
#

'*
$!
)
#

'*
,$
)
#

'(
%!
)
#

'*
++
)
#

'*
$!
)
#

'*
,$
)
#

'(
%!
)
#

'*
++
)
#

'*
$!
)
#

'*
,$
)
#

-./0.# -12.20.3# 4250#

!"
#
$%
&'
$(
)*
%

+,-'$%.%&+./0*%12$(3456%!"#$%%
&7')%8-45%59%":658$;%<5=%"#>-(?%'3@/?$6'58'*%

(a) Execution times

!"!!#

!"$!#

!"%!#

!"&!#

!"'!#

!"(!#

)*
$!
+
#

),
&&
+
#

),
(!
+
#

),
-(
+
#

)*
$!
+
#

),
&&
+
#

),
(!
+
#

),
-(
+
#

)*
$!
+
#

),
&&
+
#

),
(!
+
#

),
-(
+
#

./01/# .23/31/4# 5361#

!
""
#$
%"
&'

()%*+','-(,./0'!""#$%"&''
-1*2'$%34'45'6784$+9':4;'6<=%">'*#?.>+8*4$*0'

(b) Decomposition accuracies

Figure 9: Phase 2 (a) execution time and (b) ac-
curacy for P2I, when varying the ratio of the low
impact sub-tensors ignored during refinement

ces for modified fibers with relatively low energy of change
potentially adds errors, rather than reducing them.

Figure 8 illustrates the effect of varying the number of
fibers modified at each update: since Algorithm 3 in Phase
1 focuses the work on fibers with large changes, Phase 1
cost is directly proportional to the number of updated fibers.
In contrast, neither the execution time of Phase 2, nor the
accuracy of the overall decomposition process is affected by
the number of updated fibers,

5.2.3 Evaluation of Phase-2 Optimizations
One of the optimizations, P2I, for Phase 2 involves identi-

fying and ignoring low impact sub-tensors during the refine-
ment process. In Figure 5, we had seen that P2I provides
significant gains over the non-optimized Phase 2, P2N. As we
see in Figure 9, ignoring such low impact sub-tensors can in-
deed save significant amounts of time. Moreover, unless the
ratio of the ignored tensors is very high (75%, in the consid-
ered default scenario), these gains are obtained without any
accuracy penalties.

Figure 10 further confirms the above results. The charts
in this figure show the Phase 2 execution time and the result-
ing overall accuracy as functions of the ratio of the blocks
with updates, with and without the ignoring of low impact

!"

!#"

!##"

$
%!
&
"

$
%'
&
"

$
%!
#&

"

$
%(
#&

"

$
%!
&
"

$
%'
&
"

$
%!
#&

"

$
%(
#&

"

$
%!
&
"

$
%'
&
"

$
%!
#&

"

$
%(
#&

"

)*+,*")-.*.,*/" 0.1,"

!"
#
$%
&'
$(
)*
%

+,-'$.%/0$(1234%!"#$%
&5-67"48%9%:;3(<'%=">,%1?@->$*%

%

2(34" 2(35"

(a) Execution times

!"!!#

!"$!#

!"%!#

!"&!#

'
()
*
#

'
(+
*
#

'
()
!*

#

'
($
!*

#

'
()
*
#

'
(+
*
#

'
()
!*

#

'
($
!*

#

'
()
*
#

'
(+
*
#

'
()
!*

#

'
($
!*

#

,-./-# ,01-1/-2# 314/#

!
""
#$
%"
&'

()%*+,'!""#$%"&'
-.%$&/01'2'345"6*'7/8)'#9:%8+;'

'

5$67# 5$68#

(b) Decomposition accuracies

Figure 10: Phase 2 (a) execution time and (b) ac-
curacy, with and without low-impact sub-tensor ig-
noring (P2I vs P2N), as a function of the percent of
blocks with updates

Table 1: Impact of different low-impact sub-tensor
refinement probabilities in P2P (for Enron)

Refinement prob.
0.0 0.1 1.0

Phase 2 Time (sec.) 11.75 3.46 20.59
Accuracy 0.49 0.42 0.49

#Iterations 827.38 85.00 959.77
#Updates per Iter. 79.49 85.93 132.30

sub-tensors (i.e, P2I vs P2N). As we see in the figure, P2I
provides significant execution time gains over P2N at almost
no accuracy cost, except when the number of updated sub-
tensors reaches 20% of all blocks: when a large number of
sub-tensors are updated, more of the remaining sub-tensors
become relevant and dropping a large ratio (default, 50%),
of low impact score sub-tensors from consideration during
refinement becomes counter-productive. Therefore, we pro-
pose to address this in our future work by introducing an
adaptive impact cut-off rather than a imposing fixed ratio
of ignored blocks.

To see the impacts of the P2P and P2R optimization, we
again consider Figure 5: in this figure, we see that P2R,
which adjusts the ranks of high impact sub-tensors, pro-
vides additional execution time gains over P2I: for the two
social media data Epinions and Ciao, P2R provides the best
execution time, with no accuracy penalty.

We note that P2P, which probabilistically updates low im-
pact sub-tensors rather than completely ignoring them, does
not significantly improve accuracy. This is because the P2I

approach already has an accuracy almost identical to P2N;
i.e., ignoring low-impact tensors is a very safe and effec-
tive method to save redundant work. One interesting result,
however, is that for the Enron data P2P approach, which
increases the number of refinements relative to P2I, leads to
a significant reduction in execution time, albeit at a slight
accuracy penalty. We see the reason for this in Table 1: here

mlsapino
Highlight

0.0 corresponds to ignoring all low-impact sub-tensors (i.e.,
P2I), whereas 1.0 corresponds to not ignoring any sub-tensor
(i.e., P2N). As we see here, in Enron data, the introduction
of a refinement probability different from 0.0 and 0.1 signifi-
cantly reduces the number of refinement iterations required
for Phase 2’s convergence – thereby requiring significantly
lesser time, but also introducing higher error. Therefore,
also considering that, unless a large number of blocks are
ignored, P2I is able to match the accuracy of P2N we do not
see a major need to use P2P to reduce the impact of ignored
sub-tensors. Instead, we recommend the users to leverage
the P2R optimization, which provides execution time gains,
without any reduction in accuracy.

6. CONCLUSIONS
Computational complexity of tensor decomposition is a

major bottleneck in many applications. Especially when
the analysis results need to be incrementally maintained,
re-decomposition of the whole tensor with each and every
update will incur high computational costs. In this paper,
we introduce a two-phase block-based incremental CP tensor
decomposition (BICP) approach: In the first phase, BICP
only revises the decompositions of the tensors that contain
updated data. Moreover, when updates are relatively small
with respect to the block size, BICP relies on a incremen-
tal factor tracking to avoid re-decomposition of the updated
sub-tensor. In the second phase, BICP limits the refine-
ment process to only those blocks that are aligned with the
updated block and utilizes an automatically computed re-
finement impact score to eliminate unnecessary refinement
of sub-tensors. Experiment results on real datasets show
that BICP can significantly reduce computational cost of
obtaining the decomposition of the updated tensor, while
maintaining high accuracy.

7. REFERENCES
[1] E. Acar, et al. Multiway analysis of epilepsy tensors.

Bioinformatics, pp. 10-18, 2007.
[2] C. A. Andersson and R. Bro. The n-way toolbox for matlab.

Chemometrics and Intelligent Laboratory Systems,
52(1):1-4, National Labs, 2000.

[3] B. W. Bader, T. G. Kolda, et al. MATLAB Tensor Toolbox
Version 2.5, Available online, January 2012. URL:
http://www.sandia.gov/∼tgkolda/TensorToolbox.

[4] A. Beutel, et al. Flexifact: Scalable flexible factorization of
coupled tensors on Hadoop. SDM, 2014.

[5] A. Balmin, et al. ObjectRank: Authority-based keyword
search in databases. VLDB, 2004.

[6] P.Baranyi, et al. Definition of the HOSVD based canonical
form of polytopic dynamic models. IEEE International
Conference on Mechatronics, Pages 660-665. 2006.

[7] J. Carroll and J.-J. Chang. Analysis of individual differences
in multidimensional scaling via an n-way generalization of
“eckart-young” decomposition. Psychometrika, 1970.

[8] X.Chen and K. S. Candan. LWI-SVD: low-rank, windowed,
incremental singular value decompositions on time-evolving
data sets. KDD, 2014.

[9] S. Chakrabarti. Dynamic personalized pagerank in
entity-relation graphs. WWW, 2007.

[10] J. H. Choi and S. V. Dfacto. Distributed factorization of
tensors. Advances in Neural Information Processing Systems
27, pages 1296-1304, 2014.

[11] I. Davidson, et al. Network discovery via constrained tensor
analysis of fMRI data. SIGKDD, pages 194-202. 2013.

[12] R. A. Harshman, Foundations of the PARAFAC procedure:
Model and conditions for an explanatory multi-mode factor

analysis. UCLA Working Papers in Phonetics, 16:1-84, 1970.
[13] I. Jeon, et al. HaTen2: Billion-scale tensor decompositions.

ICDE’15, 2015.
[14] U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos.

Gigatensor: scaling tensor analysis up by 100 times
algorithms and discoveries. KDD, 2012

[15] M. Kim and K.S. Candan. Efficient Static and Dynamic
In-Database Tensor Decompositions on Chunk-Based Array
Stores. CIKM, 2014.

[16] T.G. Kolda and B.W. Bader. The tophits model for
higher-order web link analysis. Workshop on Link Analysis,
Counterterrorism and Security, 2006

[17] T. G. Kolda, J. Sun. Scalable tensor decompositions for
multi-aspect data mining. ICDM, 2008.

[18] W.Hu, X.Li, X.Zhang, X.Shi, S.Maybank, and Z.Zhang,
Incremental Tensor Subspace Learning and Its Application
to Foreground Segmentation and Tracking, Int. J.Comput.
Vis.(2001) 91:303-327

[19] X. Li, S. Huang, K.S. Candan, M.L. Sapino. Focusing
Decomposition Accuracy by Personalizing Tensor
Decomposition (PTD). CIKM’14, 2014.

[20] X. Li, S. Huang, K.S. Candan, M.L. Sapino. 2PCP:
Two-Phase CP Decomposition for Billion-Scale Dense
Tensors. ICDE’16. 2016.

[21] X.Li, W.Hu, Z.Zhang, and G.Luo, Robust Visual Tracking
Based on Incremental Tensor Subspace Learning. IEEE 11th
Int. Conf. on Comput. Vis.(2007) pp. 1-8

[22] X.Ma, et al. Dynamic Updateing and Downdationg Matrix
SVD and tensor HOSVD for adaptive indexing and Retrieval
of Motion Trajectories, ICASSP, 2009.

[23] D.Nion, and N. D. Sidiropoulos, Adaptive Algorithms to
Track the PARAFAC Decomposition of a Third-Order
Tensor, IEEE Trans on Sig. Proc. 57-6(2009), pp. 2299-2310

[24] A. H. Phan et al. CANDECOMP/PARAFAC
decomposition of high-order tensors through tensor
reshaping. TSP, 2013.

[25] A.H. Phan and A. Cichocki. PARAFAC algorithms for
large-scale problems, Neurocomputing, 74(11), 2011.

[26] E.Papalexakis, C.Faloutsos, N.Sidiropoulos.Parcube: Sparse
parallelizable tensor decompositions. ECML/PKDD. 2012.

[27] S.Papadimitriou, J.Sun, C. Faloutsos. Streaming pattern
discovery in multiple time-series. VLDB ’05. 2015.

[28] C. E. Priebe, et al. Enron data set, 2006.
http://cis.jhu.edu/ parky/Enron/enron.html

[29] A.Sobral, et al. Incremental and Multi-feature Tensor
Subspace Learning Applied for background Modeling and
Subtraction, ICIAR’14, 2014.

[30] J. Sun, S. Papadimitriou, and P. S. Yu. Window based
tensor analysis on high dimensional and multi aspect
streams. ICDM, pages 1076-1080, 2006.

[31] E. Papalexakis, C. Faloutsos, N.Sidiropoulos. Parcube:
Sparse parallelizable CANDECOMP-PARAFAC tensor
decompositions. TKDD 10(1): 3. 2015.

[32] Sun, J., Tao, D., Papadimitriou, S., Yu, P.S., Faloutsos, C.:
Incremental tensor analysis: Theory and applications. ACM
Trans. Knowl. Discov. Data 2(3) (October 2008)

[33] K. Shin and U. Kang. Distributed methods for
high-dimensional and large-scale tensor factorization. ICDM,
pages 989–994, 2014.

[34] J.T. Sun, H.J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd:
a novel approach to personalized web search. WWW, 2005

[35] C. E. Tsourakakis, Mach: Fast randomized tensor
decompositions. Arxiv preprint arXiv:0909.4969, 2009

[36] L. Tucker, Some mathematical notes on three-mode factor
analysis. Psychometrika, 31:279-311, 1966.

[37] http://www.public.asu.edu/∼jtang20/datasetcode/truststudy.htm

