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Abstract

Implant-associated infections can have severe effects on the longevity of implant devices and they 

also represent a major cause of implant failures. Treating these infections associated with implants 

by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into 

biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to 

develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel 

class of bacterial therapeutic agents, known as antimicrobial peptides (AMP’s), are receiving 

increasing attention as an unconventional option to treat septic infection, partly due to their 

capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop 

resistance towards them. While host- and bacterial- cells compete in determining the ultimate fate 

of the implant, functionalization of implant surfaces with antimicrobial peptides can shift the 

balance and prevent implant infections. In the present study, we developed a novel chimeric 

peptide to functionalize the implant material surface. The chimeric peptide simultaneously 

presents two functionalities, with one domain binding to a titanium alloy implant surface through a 

titanium-binding domain while the other domain displays an antimicrobial property. This 
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approach gains strength through control over the bio-material interfaces, a property built upon 

molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric 

peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy 

surface was evaluated in vitro against three common human host infectious bacteria, S. mutans, S. 

epidermidis, and E. coli. In biological interactions such as occurs on implants, it is the surface and 

the interface that dictate the ultimate outcome. Controlling the implant surface by creating an 

interface composed chimeric peptides may therefore open up new possibilities to cover the 

implant site and tailor it to a desirable bioactivity.
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1. INTRODUCTION

Titanium and its alloys have been extensively used in orthopedic and dental implants, 

mainly due to their unique combination of excellent mechanical properties, corrosion 

resistance, biocompatibility and osseointegration [1-5]. However, the risk of failure of these 

implants, which can lead to suboptimal clinical outcomes, still poses a significant threat to 

patients and post-surgical challenges to their clinicians [6, 7]. Although recent enhancements 

in the design of prosthetic devices and the advancements in surgical procedures have 

reduced the number of complications leading to failure, implant associated bacterial 

infections is still a serious challenge and a major cause of post-surgical morbidity and 

mortality [8].

Implant materials provides an ideal surface to the growth of common pathogens such as 

Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa, which 

could be acquired shortly after surgery or at later date. Failure to adequately combat these 

bacterial infections at the implant-tissue interface often results in complex revision 

procedures, with an economic burden to the health-care system, and in most cases the 

removal of the implant with the re-instrumentation at a later date is the only remedy. 

Moreover, formation by these pathogens of complex biofilm structures on the implant 

surface or its periphery can make the problem more difficult to address. Bacterial biofilm 

formed on the implant creates a barrier that decreases penetration of antimicrobial agents 

reducing the susceptibility of the biofilms members to drug delivery [6, 9, 10]. Even with 

substantial interest and efforts to improve local delivery of systemic antibiotics to implant 

surfaces, challenges regarding diluted drug levels at the target site and the potential toxicity 

of conventional antibiotics still need to be addressed [11, 12]. Furthermore, the potential 

development and spread of antibiotic-resistant pathogens such as the methicillin-resistant 

Staphylococcus aureus (MRSA) remain a challenge to hospital acquired infections [10, 13].

One of the successful survival strategies of bacteria is their ability to adhere to virtually any 

surfaces through their various types of adhesins. Free floating bacteria can activate the 

biofilm related phenotype after their attachment to implant surfaces. Initial phase of their 

attachment is relatively less stable compared to later stage where bacteria start expressing 
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biofilm specific genes. The window of opportunity relies on designing the surfaces prior to 

bacterial attachment moving into almost an irreversible phase, where the biofilm formation 

starts. Development of implant surfaces that would prevent bacterial adhesion becomes 

critical. Several surface coating and functionalization strategies have been reported to 

overcome implant failure associated with infections. In an attempt to render the implant 

surface non-adhesive and/or to introduce antimicrobial surfaces, the use of polyethylene 

glycol (PEG) and its derivatives [14, 15], coatings of albumin [16], covalent attachment of 

conventional antibiotics [17-20], chlorhexidine [21], silver, nitrogen oxide [22, 23] and 

quaternary ammonia compounds [19, 24] have been used. While the activation of implant 

surfaces by these agents have been shown to reduce bacterial adhesion, existing covalent 

coupling strategies often require complex chemistry to execute, with the unwieldy 

requirement of specific functional groups on the surface with extensive optimization steps. 

Moreover, the limited capacity of this chemical derivatization used for modification of 

different implant materials makes them far from providing a comprehensive solution 

[25-27]. Additionally, the slow release of derivatized antimicrobial agents from preloaded 

implant devices raises concern about a possible link to increased incidences of bacterial 

resistance and cytotoxicity [28].

Bioactivation of implant surfaces with more biocompatible and nontoxic biomolecules such 

as antimicrobial peptides (AMP’s) would be a feasible approach to overcome infection 

derived implant failure without evoking either toxicity or antibiotic resistance. These short, 

cationic AMP’s are evolutionary conserved constituents of the innate immune defense 

systems of many organisms, including insects, plants, animals and humans [29-31]. AMP’s 

are believed to specifically target and disrupt the integrity of negatively charged cell 

membrane of microorganisms. Although there is no consensus in their sequence and 

structure, AMP’s usually have an amphipathic structure which serves as efficient ionic 

recognition between the cationic residues of peptide and the phospholipids of the bacterial 

membrane [32, 33]. Furthermore, in contrast to conventional antibiotics, it is extremely 

difficult for microorganisms to develop resistance against these peptides because of their 

highly sophisticated reaction mechanisms and considerably rapid rate action [29, 34]. More 

importantly, AMP’s have broad-spectrum antimicrobial activity against gram-positive and 

gram-negative bacteria, fungi and viruses. AMP’s can work synergistically with 

conventional antibiotics and facilitate antibiotic penetration to the infection site, thus 

enabling more aggressive biofilm treatment [29]. It has been also demonstrated that the 

sequence and/or resulting structure of natural AMP’s can be utilized as templates for the 

design of synthetic variants with enhanced antimicrobial activities [35-37]. By retaining 

their localized effect through tethering and assembly of AMP’s as an antimicrobial coating 

to implant surfaces agents it could greatly increase effectiveness while reducing potential 

cytotoxic consequences and collateral damage through vascular re-distribution [38].

Unlike other approaches utilizing covalent linkages to tether AMP’s on implant surface, we 

have created bifunctional chimeric peptides composed of implant surface binding peptide 

and an AMP agent. These bifunctional chimeric peptides rely on the properties of the solid-

binding peptides [39] that preferentially bind to the titanium surface, a common implant 

surface, while freely exposing the AMP motif to combat invading bacteria. This interface on 

the implant surface is constructed by combining combinatorially selected solid-binding 
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peptides with AMP sequences in different combinations through an intervening flexible 

linker [40-44]. These bifunctional chimeric peptides were characterized in terms of their 

binding properties to titanium surface and their antimicrobial efficacy either in-solution or 

immobilized on surface. Keeping in mind the importance of assessing any therapeutic target 

against a range of problematic bacteria due to varying responses, we chose three different 

types of bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli 

to test the efficacy of our bifunctional chimeric peptides against. S. mutans is a gram-

positive, biofilm-forming bacterium commonly found in oral implant infections [45]. S. 

epidermidis is a gram-positive, biofilm-forming bacterium commonly found in orthopedic 

implant infections, making up 32% of clinical isolates from orthopedic implant infections. E. 

coli is a gram-negative, slime-producing bacterium occasionally found in orthopedic implant 

infections [46, 47].

Here we provide details on an alternative method of implant-surface functionalization that 

does not require complex procedures or the covalent modification of the implant surface 

[47-49]. The principles laid out in the paper can be applied to other identified AMP 

sequences, and expanded to a wide-range of biomaterials other than titanium by deploying 

different solid binding sequences that binds to other biomaterials [40, 49, 50]. In addition, 

structure-function relationships found in this paper can be applied for control of 

functionality over designing chimeric peptides by following simple rules [51].

2. MATERIALS and METHODS

2.1 Target Implant Material Characterization and Preparation

Surface properties of titanium grade V powder (Sigma-Aldrich, St Louis, MO, USA) and 

titanium grade V implant (Vetimplants, St. Augustine, FL, USA) were determined by 

scanning electron microscopy (SEM). Elemental composition of the substrate was analyzed 

by collecting energy-dispersive X-ray spectroscopy (EDS) spectra for 100 seconds at 9 keV 

using a LaB6 filament. Titanium grade V implant (Vetimplants, St. Augustine, FL, USA) 

was cut into approximately 1cm × 1cm squares and sharp edges were removed by hand 

polishing with a 600-grit finish silicon carbide metallurgical paper. Before experimental use, 

titanium grade V powder and implant pieces were cleaned by sonicating sequentially in a 

1:1 acetone/methanol mixture, then isopropyl alcohol, and finally de-ionized water. Then, 

substrates were sterilized for 15 minutes under UV light.

2.2 Selection of Titanium Binding and Antimicrobial Binding Peptides

Titanium binding peptides (TiBP) were selected by cell surface display [50] and phage 

display method. Briefly, for cell surface display approach, the FliTrx bacterial cell surface 

display system (Invitrogen, Carlsbad, CA, USA) was used to select peptide sequences 

against titanium substrates [52-54]. After four-rounds of successful biopanning enrichment, 

the DNA sequences for each of the 60 isolated clones were analyzed. Binding properties for 

each peptide were characterized by quantitative fluorescent microscopy, employing a Nikon 

Eclipse TE-2000U fluorescent microscope (Nikon Inc., Melville, NY, USA) equipped with a 

Hamamatsu ORCA-ER cooled CCD camera (Hamamatsu Corp., Bridgewater, NJ, USA), 

imaged using a FITC filter (exciter 460–500 nm, dichroic 505 nm, emitter 510–560 nm) and 
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MetaMorph imaging system (Universal Imaging, West Chester, PA, USA). Finally, the 

binding affinity for each peptide was calculated by determining in triplicate samples, the 

average number of adherent bacterial cells expressing the peptide identified on the titanium 

surface. Consequently to this analysis, the titanium binding peptides (TiBP) were grouped as 

strong, moderate or weak binders, according to their binding capacity.

In phage display method, the Ph.D.-12 phage display peptide library kit (New England 

Biolabs, Ipswich, MA, USA) containing 1.2 × 109 different randomized peptide sequences 

was used as previously described [55]. The peptide library is incubated with titanium grade 

V powder in potassium carbonate (PC) buffer containing 0.1% Tween 20 detergent (Merck, 

Whitehouse Station, NJ, USA) and then the unbound phages are removed by washing the 

surface with PC buffer containing 0.1% detergent (Tween 20 and Tween 80). The bound 

phages are eluted specifically from the surface using elution buffer; and the eluted pool is 

amplified in Escherichia coli ER2738. Amplified phages are purified and subsequently used 

for additional panning rounds. After each round, the phages are grown on solid media, and 

single clones are selected by picking single-phage plaques that constitute a clone for each 

selected peptide. Genomic DNA’s of single-phage clones are then isolated and their 

nucleotide sequence determined. Finally, individual clones were characterized by 

quantitative fluorescent microscopy employing a Nikon Eclipse TE-2000U, as described 

above.

Computationally-designed and characterized short AMP sequences were chosen by data 

mining from the literature [44, 56]. The molecular weight (MW), isoelectronic point (pI), 

charge and grand average of hydropathy (GRAVY) value parameters for each peptide were 

calculated using ExPASy Proteomics Server.

2.3 Peptide Synthesis

An automated solid-phase peptide synthesizer (CS336X, CS-Bio Inc., Menlo Park, CA, 

USA) was utilized to synthesize peptides through Fmoc-chemistry. In this approach, 

modified amino acids with the N-terminus and amino acid side chains protected by Fmoc-

group and an appropriate protecting group, respectively, were used. In the reaction vessel, 

the Wang resin (Novabiochem, West Chester, PA, USA), pre-loaded with Fmoc protected 

first amino acid, was treated with 20% piperidine in DMF to remove the Fmoc group and 

monitored by UV-absorbance at 301 nm. The incoming amino acid, separately activated 

with HBTU (Sigma-Aldrich, St Louis, MO, USA) in dimethylformamide (DMF), was 

transferred into the vessel and incubated with the resin for 45 min. After washing the resin 

with DMF, this protocol was applied for addition of each of the next amino acids.

Following synthesis, the resulting resin-bound peptides were cleaved and the side-chain de-

protected using reagent-K (TFA/thioanisole/H2O/phenol/ethanedithiol (87.5:5:5:2.5)) and 

precipitated by cold ether. Crude peptides were purified by RP-HPLC with up to >98% 

purity obtained (Gemini 10u C18 110A column). The sequence of the peptides was 

confirmed by mass spectroscopy (MS) using a MALDI-TOF mass spectrometry with 

reflectron (RETOF-MS) on an Autoflex II (Bruker Daltonics, Billerica, MA, USA). Stock 

solutions of each peptide at 4 mM were made in sterile-, de-ionized-water by dissolving the 

peptides. Subsequent dilutions were accomplished with sterile 1X PBS.
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2.4 Binding Characterization of Peptides onto the Titanium Alloy Implant Surfaces

Fluorescent microscopy characterization procedure was applied to investigate the binding 

affinities for both the titanium binding peptide as was the AMP conjugated bifunctional 

chimeric peptides. In this assay, the biotinylated peptide was incubated with pre-cleaned 

substrates for 3 hours at room temperature. Following, substrates were washed three times 

with 1X phosphate-buffered saline (PBS) and bound peptides were labelled with 

streptavidin-Alexa Fluor 488 (Molecular Probes, Eugene, OR, USA) by incubation for 15 

minutes in the dark. Substrates were washed with de-ionized water three times and bound 

peptides were visualized on the substrate surface by fluorescent microscope. All 

measurements were carried out by triplicate independent experiments.

2.5 Bacterial Maintenance and Culturing

Three bacteria species - Escherichia coli American Type Culture Collection (ATCC) 2592, 

Streptococcus mutans ATCC 25175, and Staphylococcus epidermidis ATCC 29886 were 

used in the present study. All of them were cultured according to ATCC protocol using the 

following media: Trypticase Soy Broth (TSB) for E. coli, Brain Heart Infusion (BHI) Broth 

for S. mutans, and Nutrient Broth (NB) for S. epidermidis. For all three bacterial species, the 

bacterial pellet obtained from ATCC was rehydrated in 0.5 mL of the above-specified 

media, and several drops of the suspension were immediately streaked on the relevant solid 

media. The agar-plate was then incubated aerobically at 37°C for 24 hours, except in the 

case of S. mutans which was incubated in the presence of 5% CO2 supplemented 

atmosphere. S. mutans overnight cultures were made by aseptically transferring a single-

colony forming unit into 10 mL of BHI, followed by aerobic incubation at 37°C in the 

presence of 5% CO2 for 16 hours under static conditions. Overnight cultures of S. 

epidermidis and E. coli were made by aseptically transferring a single-colony forming unit 

into 10 mL of NB or TSB (respectively), followed by aerobic incubation at 37°C with 

constant agitation (200 rpm) for 16 hours.

2.6 In-Solution Antimicrobial Activity of Chimeric Peptides

The in-solution antimicrobial activity of the chimeric peptide was analyzed against S. 

mutans, S. epidermidis, and E. coli spectrophotometrically. For each bacteria species, 

solutions of selected antimicrobial peptides were added in specified media to reach pre-

determined final concentrations and inoculated with the bacteria to a final concentration of 

107 cells/mL. Bacterial growth at 37°C was monitored over the course of 24 hours by optical 

density measurements at 600 nm on a Tecan Safire spectrophotometer. Each experiment 

contained control samples consisted solely of 107cells/mL of bacteria in the specified media.

2.7 Bacterial Adhesion and Quantification on Chimeric Peptide Coated Implant Surfaces

Pre-cleaned titanium substrates were incubated at 37°C under constant agitation (200 rpm) 

with chimeric peptide solution and removed after 3 hours. An aliquot of 1 mL of sterile 1X 

PBS was then added to each well, agitated by pipetting three times and removed from the 

well. A second 1mL aliquot of sterile 1X PBS was added to each well, agitated as before, 

and removed from the well. Using sterile forceps, each titanium substrate was moved to a 

clean well that was free of any peptides.
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To proceed with bacterial adhesion experiments, overnight cultures for each bacterium were 

prepared as described above. Bacteria from the overnight cultures were used to inoculate 

fresh media to a final concentration of 107 cells/ml. Cultures were incubated until they 

reached the mid-log phase as determined by optical density measurement at 600 nm, 

collected by centrifugation at 2000 xg for 5 minutes. The supernatant decanted and the 

bacterial pellet was re-suspended in 500 μL of specified media. This suspension was 

transferred to a 2 mL centrifuge tube and centrifuged at room temperature at 2000 xg for 3 

minutes. The supernatant was carefully removed and the bacterial pellet was re-suspended in 

sterile 1X PBS to a final concentration of 108 cells/mL. An aliquot of 1mL of the 108 

cells/mL cell suspension was added to each well containing a chimeric peptide-modified 

titanium substrate, and incubated for 2 hours. For S. mutans experiments, incubation was 

carried out at 37°C in the presence of 5% CO2 under static conditions; for S. epidermidis 

and E. coli experiments, incubation was carried out aerobically at 37°C under constant 

agitation (200 rpm). After 2 hours incubation the bacterial suspension was removed by 

aspiration and the surfaces were washed two times with 1mL of 1X PBS. Bacterial cells 

adhered to the titanium substrates were fixed with 500 μL of 2% glutaraldehyde for 30 

minutes, followed by dehydration in a series of increasing gradient of water: alcohol baths, 

consisting of 50% ethanol for 10 minutes, 70% ethanol for 10 minutes, 90% ethanol for 10 

minutes, and a final 1 mL of 100% ethanol. Detection of the bacterial cells was carried out 

by addition of 500 μL of 5 μM SYTO9 green fluorescent nucleic acid stain (Invitrogen, 

Carlsbad, CA, USA) added to each well containing a substrate, protected from light, and 

incubated for 20 minutes. Substrates were washed 3 times with 1mL of 1X PBS, and each 

aliquot was agitated by re-pipetting twice. After washing, the substrates were secured onto a 

clean microscope slide and viewed with a Nikon Eclipse TE2000-U fluorescent microscope. 

Images were obtained from five random sites of implant surfaces and analyzed for percent 

surface coverage using MetaMorph (Version 6.r6) software.

2.8 Chimeric Peptide Structure Determination and Structure-Function Analysis

The structure of the peptides was investigated by the fragment insertion method using the 

Robetta server, followed by energy minimization routing using PyRosetta software [57-59]. 

Two hundred decoys were energy minimized for each sequence. The lowest energy structure 

was taken as the best estimate of the structure in-solution for the molecular descriptor 

analysis. All decoys were used for the secondary structure analysis of the length of alpha 

helix, the length of right-handed alpha-helices and the length of left-handed alpha helices. 

DSSP [60] was used to calculate the secondary structure based upon three-dimensional 

atomic coordinates for a peptide structure. Rules were induced by the MLEM2 algorithm 

modified learning from experience module version 2 [61]. Only the rules that label all cases 

in the data more accurately than a rule without conditions are given in the results.

3. RESULTS and DISCUSIONS

In this study, we demonstrated the use of chimeric peptides as antimicrobial coating agents 

on titanium grade V implants (Figure 1). Bifunctional chimeric peptides, comprising a 

combinatorially-selected titanium binding and computationally-designed antimicrobial 

domains were constructed. Surface-binding characterizations of these peptides were 

Yucesoy et al. Page 7

JOM (1989). Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



investigated using fluorescent microscopy. Antimicrobial activity of these bifunctional 

peptides were demonstrated against different pathogens common to implant infections; S. 

mutans, S. epidermidis, and E. coli. The potential molecular property rules were elaborated 

for the related sequence- activity relationships of the peptides following their folding 

patterns in the secondary structures.

3.1 Selection and Characterization of Solid Binding Peptides

The phage display technique [55] was applied on titanium grade V powder to select peptides 

that could serve as potential molecular linkers to tether antimicrobial peptides on implant 

material surfaces. Throughout the selection process, four successive rounds of biopanning 

were performed, resulting in 50 unique clones, which were subjected to DNA nucleotide 

sequence determination and analysis. Fluorescent microscopy technique is a semi-

quantitative binding assay that was applied to investigate the affinity level among each of 

the titanium binding peptides expressed by individual clones. For this assay, each clone was 

incubated with titanium grade V powder and then visualized using an anti-M13 specific 

antibody and fluorophore labeled secondary antibody. To evaluate the specific surface 

affinity of individual clones, the bound phage clones expressing titanium binding sequences 

were visualized as uniformly distributed bright green rods on a dark background of the 

implant material, as opposed to wild type M13 phage, which fail to bind. Based on these 

results, all the identified peptides were successfully categorized as strong, moderate and 

weak binders (Figure 2).

To eliminate the internal bias resulting from the amino acid distribution for each phage-

display and cell-surface display library, the two strongest peptides selected via phage display 

were further characterized and compared with titanium binding peptides that are previously 

selected by cell surface display and characterized [50]. Each identified peptide was 

synthesized with biotin and incubated with titanium implants. After removing the unbound 

peptides, surface coverage of each peptide were visualized by using a fluorophore probes 

attached via interaction of biotin with streptavidin. Surface coverage ratios as well as the 

predicted MW, pI, net charge and G.R.A.V.Y. values of synthesized titanium binding 

peptides are depicted in Figure 3 and Table 1.

3.2 Selection and Characterization of Antimicrobial Peptides

Bacteria growth curves in the presence of antimicrobial peptides with two-fold increment 

concentrations ranging from 1 μg/mL (0.66 μM) to 512 μg/mL (337.92 μM) were analyzed 

for a 24 h period to determine the minimum inhibition concentration (MIC) value for the 

each of the bacterial strains common for oral and orthopedic implant infections, i.e., S. 

mutans, S. epidermidis, and E. coli. As shown in Table 2, AMP1 and AMP2 are both 

effective against three of these organisms yet each revealed with different MIC values. The 

MIC values of AMP1 against E. coli, S. epidermidis, and S. mutans were determined as 9.45 

μM, 4.72 μM, and 37.81 μM, respectively. For AMP2, these MIC values against E. coli, S. 

epidermidis, and S. mutans were found as 21.08 μM, 0.66 μM, and 10.54 μM, respectively. 

These concentrations indicate that AMP1 is more effective against E. coli than AMP2. 

Whereas, AMP2 prevented S. mutans and S. epidermidis growth with much lower 

concentrations than AMP1.
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3.3. Construction and Characterization of Bifunctional Chimeric Peptides

Bifunctional chimeric peptides having both titanium binding affinity and antimicrobial 

activity were constructed by coupling the titanium binding peptide (TiBP) domain with the 

antimicrobial peptides, i.e. either AMP1 or AMP2, in different combinations. In this design, 

TiBP’s were inserted to the C’-terminal ends of the AMP’s with a structurally flexible triple 

glycine (Gly-Gly-Gly) linker sequence to enable the surface display and thus preserve the 

functionalities of both the titanium binding peptide and the AMP’s. The amino acid 

sequences and theoretical parameters, such as MW and pI, for each of the bifunctional 

peptide were listed in Table 3. Successful design of any bifunctional chimeric peptide 

requires that the multifunctional activities embedded in the final construct are confirmed. 

Therefore, the efficiency of the resulting bifunctional chimeric peptide was investigated with 

respect to titanium binding affinity as well as its antimicrobial activity. To investigate the 

antimicrobial activity, bifunctional chimeric peptides were tested against strains of E. coli, S. 

epidermidis, and S. mutans and the resulting MIC values were calculated by 

spectrophotometrically monitoring bacterial growth in the presence of these bifunctional 

chimeric peptides. Concentration for each peptide was chosen such that the lowest test 

concentration was set to the predetermined MIC value of each AMP to be ensure that the 

same number of AMP molecules were present in the solution. The dynamic range was 

determined using two fold increment to reach the highest peptide concentrations tested.

As shown in Table 4, among five different bifunctional chimeric peptides, those that 

harboring AMP1 as an antimicrobial counterpart, i.e. TiBPS1-AMP1 and TiBPS2-AMP1, 

showed the most effective antibacterial activity against E. coli, at concentrations of 9.58 μM 

and 21 μM, respectively. Furthermore, compared to the TiBPS2-AMP1, TiBPS1-AMP1 was 

revealed to be two times more effective in its antimicrobial activity. The attenuation in the 

antimicrobial efficiency of AMP1 depended on the titanium binding peptide to which it is 

coupled. This outcome can be attributed to differences in the amino acid composition and 

the sequences of these bifunctional chimeric peptides. In the case of S. epidermidis, it was 

revealed that the TiBPS1-AMP2 is the most effective peptide in-solution, being able to 

prevent bacterial growth at as low as 2.52 μM concentration. In addition, TiBPS1-AMP1, 

TiBPS2-AMP1 and TiBPS3-AMP2 also showed considerable antimicrobial activity, with 

MIC values of 4.78 μM, 5.23 μM and 5.23 μM, respectively. Interestingly, in contrast to two 

fold reduction in the antimicrobial efficiency of TiBPS2-AMP1 compared to TiBPS1-AMP1 

against E. coli, these bifunctional peptides did not show the same trend against S. 

epidermidis. This can be attributed to the complex interactions between the bacterial cell 

membrane and the antimicrobial peptides during targeting and penetration into the bacterial 

cell membrane. It also implies that overall antimicrobial activity depends not only on amino 

acid sequence, but also the membrane structure and composition of the targeted 

microorganism. Also, the hydrophobicity of the AMP, the presence of positively charged 

residues, amphipatic nature of the peptide, and secondary structure are some of known 

factors that can effect both the antimicrobial activity and antimicrobial selectivity to specific 

organisms.
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In the case of S. mutans both TiBPS1-AMP2 and TiBPS3-AMP2 showed highest 

antimicrobial activity with MIC of 80.8 μM while for the TiBPS1-AMP1 it was 153.25 μM 

which again suggests the complex mechanism of antimicrobial action of peptides.

3.4. Bacterial Adhesion on Peptide Functionalized Implant Surfaces

Following the determination of the MIC values of each peptide against three different 

bacterium in-solution, antimicrobial efficacy of these peptides were further characterized on 

the titanium implant surfaces against S. mutans, S. epidermidis and E. coli.

With this aim, 100 μM of each bifunctional chimeric peptide was incubated for 4 hours at 

37°C with constant agitation with the sterile titanium implant. The excess peptide was 

removed by washing surface 3 times with PBS buffer. Surfaces were incubated with bacteria 

culture at 108 cells/mL for 2 hours. After incubation, the cells were fixed and labeled with 

SYTO 9 dye, which penetrates through the bacterial membranes and stains the cells green. 

The bacterial binding and antimicrobial efficacy of peptide functionalized titanium implant 

surfaces were analyzed by visualizing under fluorescent microscopy.

As shown in Figure 4, both the S. mutans and S. epidermidis adhesion on titanium implants 

coated with bifunctional chimeric peptides was significantly reduced compared to bare 

titanium implant surface. Moreover, in contrast to in-solution antimicrobial activities 

discussed above, surfaces coated with TiBPS1-AMP1 and TiBPS2-AMP1 showed similar 

antimicrobial activities against S. mutans and S. epidermidis. Compared to AMP2 containing 

bifunctional chimeric peptides, those harboring AMP1 showed better surface antimicrobial 

activity against S. mutans. These results demonstrates that with 30-fold reduction in 

bacterial adhesion compared to bare surface, the TiBPS1-AMP1 is the most efficient 

bifunctional chimeric peptide to be utilized as titanium implant surface functionalization 

against S. mutans. On the other hand, against S. epidermidis acquired infections, TiBPS1-

AMP1 and TiBPS3-AMP2 would be the better choice for surface functionalization of 

titanium implants.

3.5. Peptide Molecular Property Rules

AMP-sequences tested, AMP1 and AMP2, have complex sequence-activity relationships 

with bacterial cell membranes that are sensitive to the change between chimeric and single 

forms. To decipher the sequence-activity relationships of these variants, patterns from 

multiple sources were considered in deriving two rule sets. Figure 5 provides a diagram of 

the derivation of each of the two rule sets. The first rule set is based on molecular properties, 

such as isoelectric point, overall charge, average hydropathy and molecular weight. The 

second rule set is based on folding patterns of secondary structure in terms of alpha helix 

length. The peptide AMP efficiency results were divided first by bacteria strain. Then, they 

were subdivided by level of efficiency, such as low, medium and high.

Rules for the most relevant and specific patterns were derived by the rough set theory 

approach. The rules are simplified if removing a part of a rule does not affect its specificity. 

A rule is removed if other remaining rules cover the results that it also covers.
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For the first rule set, the molecular properties that were the most relevant and specific 

according to rough set theory to each efficiency level are given by the rules in Table 5. The 

first two columns of the table describe which molecular properties are relevant and specific. 

The next two columns give the divisions of the data by bacterial strain and by the MIC level. 

The last column describes how relevant the rule is by stating the number of applicable 

results to which the rules applies and it describes how specific the rule is by stating the 

number of those results to which the rule correctly applies.

The first rule set uses the molecular properties as conditions. These rules are certain rules, 

meaning all of the results that apply are classified correctly. The first two rules imply that to 

have the lowest observed MIC value of under 21 μM for E. coli, the charge of the peptide 

should be +6 or greater. When the charge is less positive, the MIC level is near 167 μM is 

expected. The molecular weight range of the first rule indicates that either AMP’s in the 

chimeric or singular form can be effective against E. coli at the low MIC value of under 21 

μM. The observed constraints for an MIC level for S. epidermidis near 5 μM are a positive 

charge from +4 to +9 with an average hydropathy score of the amino acid residues between 

-1.84 and 0.5. Negative hydropathy scores relate to hydrophilic amino acids such as 

arginine. Again, the range of molecular weight shows that the results include an AMP in 

chimeric form and in an AMP singular form with an MIC efficiency of near 5 μM.

3.6. Peptide Structure Function Rules

Peptide structure tendencies may influence the antimicrobial functionality. We performed 

structural analysis to investigate if there is a trend for their secondary structure tendencies. 

Figure 4 shows the antimicrobial functionality for four of the bifunctional chimeric 

sequences against S. epidermidis and S. mutans and their lowest predicted energy structures. 

At first glance, comparing the first two peptides with the last two peptides seems to indicate 

that the longer the alpha helix, the stronger the antimicrobial functionality against these 

strains.

Here, in order to obtain the lowest energy structure of these chimeric peptides we performed 

a further analysis among the hundreds of decoys that are generated to obtain the lowest 

energy structure also uncovered trends using the peptide structure tendencies, in addition to 

the lowest energy structures.

The second rule set (Table 6) was generated to identify predicted secondary structural 

features that may be responsible for the antimicrobial functionality. Right-handed alpha 

helices were commonly predicted for the peptides, but no beta-sheet formations were 

predicted. Left-handed alpha helices are uncommon for systems that use L-amino acids. The 

side chains of L-amino acids would point toward the crowded axis of the helix instead of 

away. D-amino acids may form left-handed alpha helices, and for the same reason D-amino 

acids generally do not form right-handed helices [62].

The peptide structure prediction scheme does not explicitly constrain the predicted structures 

to any particular secondary structure type. The backbone angles were selected from similar 

fragments in the Protein Databank returned from the Robetta server. A specific 

conformation of a 5 amino-acid alpha helix in which 4 of the amino acids are predicted to 
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turn toward a right-handed axis seems to be a common predicted secondary structure feature 

in peptides with MIC values on the order of 10 μM across all three strains. The other 

identified predicted secondary structural feature is an 8 amino-acid long alpha-helix 

associated with an MIC on the order of 100 μM in S. mutans. The results from the E. coli 

and S. epidermidis were the same because the same sequences were effective against both 

strains.

Among the predicted structures that the rule induction algorithm identified are many cases 

of the AMP unit showing the same folded structure in the bifunctional chimeric peptide and 

the AMP-only sequence were observed. Figure 6 shows decoys of a bifunctional chimeric 

sequence and two AMP-only sequences that have the same predicted folded structure for the 

AMP unit. Figure 7 shows three bifunctional chimeric sequence decoys with varied TiBP 

structure and conserved AMP structure. The AMP-secondary structure patterns may be 

sequence-order specific. If the AMP structure was at the N-terminus, instead of the C-

terminus, the TiBP may be more disruptive to its secondary structure patterns. Our results 

provide an initial scheme to develop design rules for chimeric peptides where their 

secondary structure predictions could be linked to their observed antimicrobial properties. 

Combining secondary structure analysis with the experimental evaluations may provide an 

iterative path for effective design of engineered peptides to utilize their biological tasks 

while expanding the functional repertoire with materials selective biological self –assembly 

property.

4. CONCLUSIONS

Here we describe a peptide-based implant surface functionalization approach to prevent 

implant failure due to bacterial infection. Bifunctional chimeric peptides having a specific 

surface recognition and binding ability, as well as an antimicrobial activity were designed. 

The implant surface was coated with these chimeric peptides and inoculated with a standard 

bolus of bacteria culture to test for bacterial adhesion and/or growth on implant surface. The 

in-solution activity tests revealed that the functionality of the antimicrobial peptide is 

conserved when combined in the bifunctional chimeric peptide. The bacterial adhesion 

studies demonstrated that chimeric peptides coatings provided antimicrobial property for the 

titanium implants. Collectively, the use of solid binding peptides as molecular recognition 

units for creating an interface on the implant surface that can be combined with 

antimicrobial peptides may enable better control of the tissue-implant interface and thereby 

leads to modalities that prevent infection and subsequent implant failure. Structure-function 

relationships used here recognize features putatively leading to the antimicrobial 

functionality based on individual pathogen data. The analysis of the peptide secondary 

structures provides guidance for future de novo antimicrobial peptide design specific for 

diverse surfaces.

By offering single-step and bio-friendly alternative to the conventional chemical and 

physical immobilization methods, without the requirement of undesired surface activation 

processes, solid binding peptides provides new approaches towards merging biological tasks 

into self-assembly pathways. These short peptides can be the key components to achieve 
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integrated materials-tissue interfaces coupling large repertoire of the biological tasks to the 

specific sites.
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Figure 1. 
Schematics of biological self-assembly of chimeric antimicrobial peptide coating of titanium 

implant surface.
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Figure 2. 
Phage bound titanium binding peptides (TiBP’s) selected by phage display: (a) examples of 

FM images of TiBP’s with different binding affinities; (b) categorization of the titanium 

binding phage clones based on relative binding affinity analysis via FM.
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Figure 3. 
Relative binding affinities of titanium binding peptides (TiBP’s) selected by cell surface 

display (CSD) and phage display (Ph.D.). Phage bound TiBPS3 and TiBPS4 are represented 

in previous figure as Clone 7 and Clone 22, respectively.
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Figure 4. 
Bacterial adhesion on peptide modified titanium implant surfaces against Streptococcus 

mutans (middle column), Staphylococcus epidermidis (left column) and their predicted 

secondary structures (right column).
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Figure 5. 
The algorithm flowchart showing inducing rules to describe the antimicrobial functionality 

of peptides.
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Figure 6. 
Structural alignment showing the conserved AMP1 structure in bifunctional chimeric 

peptides and AMP-only peptides.
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Figure 7. 
Structural alignment showing the flexibility of TiBPS2 compared to the secondary structure 

pattern seen AMP1 in decoys of TiBPS2-AMP1.
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Table 1

The physicochemical properties of the selected titanium binding peptides (TiBP), MW, pI, net charge and the 

hydropathy values.

Peptide Name Sequence MW (kDa) pI Charge G.R.A.V.Y score

TiBPS1 RPRENRGRERGL 1495.6 11.82 +3 -2.633

TiBPS2 SRPNGYGGSESS 1197.1 5.72 0 -1.567

TiBPS3 HAYKQPVLSTPF 1387.6 8.60 +1 -0.333
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Table 2

Minimum inhibitory concentration (MIC) values of AMP-1 and AMP-2 against E. coli, S. epidermidis and S. 

mutans.

Peptide Sequence E. coli (μg/ml) S. epidermidis (μg/ml) S. mutans (μg/ml)

AMP1 LKLLKKLLKLLKKL 16 (9.45 μM) 8 (4.72 μM) 64 (37.81 μM)

AMP2 KWKRWWWWR 32 (21.08 μM) 1 (0.66 μM) 16 (10.54 μM)
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Table 3

MW, pI, net charge and the hydropathy of designed chimeric peptides.

Peptide Name Sequence MW (kDa) pI Charge G.R.A.V.Y score

TiBPS1-AMP1 RPRENRGRERGLGGGLKLLKKLLKLLKKL 3341.1 11.85 +9 -0.890

TiBPS2-AMP1 SRPNGYGGSESSGGGLKLLKKLLKLLKKL 3042.6 10.93 +6 -0.448

TiBPS1-AMP2 RPRENRGRERGLGGGKWKRWWWWR 3166.6 12.13 +7 -2.254

TiBPS3-AMP2 HAYKQPVLSTPFGGGKWKRWWWWR 3058.5 11.17 +5 -1.104
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Table 4

Minimum inhibitory concentration (MIC) values of chimeric peptides against E. coli, S. epidermidis and S. 

mutans.

Peptide Name Sequence E. coli (μg/ml) S. epidermidis (μg/ml) S. mutans (μg/ml)

TiBPS1-AMP1 RPRENRGRERGLGGGLKLLKKLLKLLKKL 32 (9.58 μM) 16 (4.78 μM) 512 (153.25 μM)

TiBPS2-AMP1 SRPNGYGGSESSGGGLKLLKKLLKLLKKL 64 (21 μM) 16 (5.23 μM) 1024 (336.5 μM)

TiBPS1-AMP2 RPRENRGRERGLGGGKWKRWWWWR 256 (80.8 μM) 8 (2.52 μM) 256 (80.8 μM)

TiBPS3-AMP2 HAYKQPVLSTPFGGGKWKRWWWWR 512 (167.4 μM) 16 (5.23 μM) 256 (83.7 μM)
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Table 5

Rules set induced from MW, pI, net charge and the hydropathy for minimum inhibitory concentration (MIC) 

by molarity.

Property Value Interval Pathogen MIC Interval Correct Cases/Applicable Cases (7 Total Cases)

pI 9.65 –12.13 E. coli 9.45 μM –21 μM 3/3

charge 5.5 –9.0 E. coli 9.45 μM –21 μM 3/3

GRAVY score -2.177 –0.5 E. coli 9.45 μM –21 μM 3/3

Molecular Weight 1279.5–3341.1 E. coli 9.45 μM –21 μM 3/3

pI 10.965 –12.13 E. coli 167.4 μM –167.6 μM 2/2

Charge 0 – 5.5 E. coli 167.4 μM –167.6 μM 2/2

Molecular Weight 3050.55–3341.1 E. coli 167.4 μM –167.6 μM 2/2

Charge 3.5 –9.0 S. epidermidis 4.72 μM -5.23 μM 5/5

GRAVY score -1.8375 –0.5 S. epidermidis 4.72 μM -5.23 μM 5/5

Molecular Weight 1593.95–3341.1 S. epidermidis 4.72 μM -5.23 μM 5/5
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Table 6

Rules set induced from lengths of alpha-helices and the chirality of the member residues for minimum 

inhibitory concentration (MIC) level by molarity.

Alpha Helix Property Pathogen MIC Interval Correct Cases/Applicable Cases (1400 Total Cases)

5-a.a.-helix
4-a.a.-right-handed helix

E. coli 9.45 μM –21 μM 164/179

5-a.a.-helix
4-a.a.-right-handed helix

S. epidermidis 4.72 μM -5.23 μM 164/179

5-a.a.-helix
4-a.a.-right-handed helix

S. mutans 10.54 μM –37.81 μM 151/179

8-a.a.-helix
6 or 8-a.a.-right-handed helix

S. mutans 336.5 μM 8/11
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