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Sampling and series expansion theorems for fractional
Fourier and other transforms
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Abstract

We present much briefer and more direct and transparent derivations of some sampling and series expansion relations for
fractional Fourier and other transforms. In addition to the fractional Fourier transform, the method can also be applied to the
Fresnel, Hartley, and scale transform and other relatives of the Fourier transform.
? 2003 Published by Elsevier B.V.
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The fractional Fourier transform [10] is a general-
ization of the ordinary Fourier transform. It has re-
ceived considerable interest over the past decade and
has found many applications in optics and signal pro-
cessing [1,2,5–10]. Of particular interest from a sig-
nal analysis perspective is the observation that as a
signal is fractional Fourier transformed, its time- or
space-frequency representations—such as the Wigner
distribution—rotate in the time- or space-frequency
plane. The fractional Fourier domains [6], which are
generalizations of the conventional time/space and fre-
quency domains, provide a continuous transition be-
tween the time/space and frequency domains.
A number of sampling and series expansion the-

orems for fractional Fourier transform have been
derived [13–16]. Here we show how an elementary
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technique can reproduce these results in a much more
direct way.
The fractional Fourier transform [10] of f(t) with

angle � is deBned as 3

F�{f(t)}(t�)

=f�(t�) =
K�√
2�

ej(t
2
� =2) cot �

×F�=2{ej(t2=2) cot �f(t)}(t� csc �); (1)

where K� =
√
(1− j cot �) and F�=2 is the ordinary

Fourier transform operation,F�=2{f(t)}(!)=F(!)=
1=
√
2�

∫∞
−∞ f(t)e

−j!t dt. The function f�(t�) denotes
the fractional domain representation of f(t) with the
rotation angle �. Readers may examine [1,7] for the
angle interpretation of the domain index. An extension
of the continuous-input, continuous-output transform
to discrete signals is given in [3,4,11,12].

3 We follow the notation of [13] which diEers from [7,10].
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Shannon’s interpolation theorem for the ordinary
Fourier transform expresses a band-limited function in
terms of its time domain samples. It is possible to write
the dual of this theorem for the time-limited functions.
The dual theorem says that if f(t) is time-limited to
[ − T=2; T=2], the Fourier transform of f(t) can be
expressed as F(!)=

∑
n F(nW ) sinc(!=W−n), where

W = 2�=T .
To derive the sampling theorem for fractional

Fourier transform, we deBne an intermediary function
v(t) = ej(t

2=2) cot �f(t). If f(t) is time-limited, so is
v(t). The Fourier transform of v(t) can then be cal-
culated from the interpolation formula given in the
preceding paragraph. By making use of this result,
we can express the fractional Fourier transform of a
time-limited function as

f�(t�) =
K�√
2�

ej(t
2
� =2) cot �

∑
n

V (nW )

×sinc
( t� csc �

W
− n

)
: (2)

To eliminate V (nW ), we evaluate the expres-
sion above at t� = mW sin � (m is an arbitrary
integer). Upon this evaluation, we obtain a rela-
tion for V (nW ); K�=

√
2�V (mW ) = f�(mW sin �)

× e−j((mW sin �)2=2) cot �. By substituting this relation in
(2), we get the interpolation theorem of the fractional
Fourier transform for the domain limited functions:

f�(t�)

= ej(t
2
� =2) cot �

∑
n

f�(sin �Wn)

×e−j((sin �Wn)2=2) cot � sinc
( t� csc �

W
− n

)
: (3)

This relation implies that a function limited at a frac-
tional domain can be represented by its samples at any
other fractional domain. This Brst fundamental rela-
tion is equivalent to expressions which have been pre-
viously presented by Xia [15] and Zayed [16].
Now, by applying the inverse transform F−� to

both sides of (3); we immediately get the equivalent of
the classical Fourier series for the fractional transform.

f(t) =
√
2�
K−�|sin �|

T

∑
n

f�(sin �Wn)

×e−j(t2+(sin �Wn)2)(cot �=2)+jnWt : (4)

This second fundamental relation was presented by
Pei et al. [13], but was arrived at a lengthier path.
The same technique can be applied to other trans-

forms with a suitable intermediary function. We
present another application on Cohen’s scale trans-
form [4]. The relation between the scale transform
and Fourier transform is given by {Sf}(c) =
F{W{f}}(c) where W is the exponential warping
operation, fW (t) =W{f}(t) = f(et)et=2. Assuming
that f(t) is scale-limited to C0, it is possible to write
an analogous series expansion in scale domain as

fW (t) =
∑
n

fW
(
n
C0

)
sinc(C0t − n): (5)

Applying the inverse warping operation, we obtain the
sampling theorem for the scale transform, [4]

f(t) =W−1{fW (t)}

=
∑
n

f(en=C0 )en=2C0
sinc(C0 ln(t)− n)√

t
: (6)

Another point of interest is the Parseval’s relation for
the domain limited functions. By taking the magnitude
square of both sides of (4) and then integrating, we
reach the Parseval’s relation for the fractional Fourier
series∫ T=2

−T=2
|f(t)|2 dt =W |sin �|

∑
n

|f�(sin �Wn)|2: (7)

The reader may wish to examine following cases
to gain more insight on the continuum of fractional
domains: As � → �=2, Eq. (7) evolves into classical
Parseval’s relation. As � → 0, the summation on the
right side of (7) turns into the integration operation on
the left, thus making both sides identical. As the span
of the function f(t) expands in time, that is T → ∞;
Eq. (7) reduces to the unitarity property of the con-
tinuous fractional Fourier transform. Similarly as
T → ∞, the fractional series expansion given in
(4) approaches to the deBnition of fractional Fourier
transform given in (1).
Although we do not provide further examples, the

presented approach can be applied to many other trans-
forms including Fresnel transform, Hartley transform
and to the other relatives of Fourier transform.
In conclusion, we have presented a simple technique

which allows briefer and more direct derivations of
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sampling and series expansions theorems for fractional
Fourier and other transforms. Apart from representing
simpliBcation of the analysis of previous papers, the
technique can be applied to a variety of transforms and
should be useful as a generic tool which can produce
key relations systematically and eEortlessly in a few
steps.
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