168 research outputs found

    Greenfall Links Groundwater to Aboveground Food Webs in Desert River Floodplains

    Get PDF
    Groundwater makes up nearly 99% of unfrozen freshwater worldwide and sustains riparian trees rooted in shallow aquifers, especially in arid and semiarid climates. The goal of this paper is to root animals in the regional water cycle by quantifying the significance of groundwater to riparian animals. We focused our efforts on the cricket, Gryllus alogus: a common primary consumer found in floodplain forests along the San Pedro River, in southeast Arizona, USA. Cottonwood trees make groundwater available to G. alogus as dislodged, groundwater-laden leaves (greenfall). We hypothesized that groundwater fluxes mediated by greenfall sustain G. allogus through the prolonged dry season and link these aboveground consumers to belowground aquifers. To test this hypothesis, we first characterized gradients in absolute humidity (air) and water stress in field-collected G. alogus. Absolute humidity declined with distance from river across wide stands of floodplain cottonwood forest during the dry season, but not during the rainy season. Similarly, G. alogus body water content declined along this gradient. Second, we measured evaporative water loss (EWL) by field-captured G. alogus in the laboratory at temperatures bracketing field conditions. EWL ranged from 0.05 ± 0.009 g·individual-1·d-1 0.13 ± 0.03 g·individual-1·d-1 (mean ± SD, at 30° and 40°C, respectively). These daily losses are high, but still less than the water content of a single cottonwood leaf (0.296 ± 0.124 g H2O/leaf). Third, we designed field experiments to quantify the relative dependence of G. alogus on greenfall. G. alogus more frequently consumed greenfall than various controls consisting of dried leaves. This preference occurred in distal habitats and during the dry season, but not proximal to the river or in the rainy season. Finally, we compared estimated daily water fluxes via greenfall to (1) estimates of water demand of the entire G. alogus population at our field site, and (2) reports of cottonwood transpiration and San Pedro River base flow from other authors. By our estimates, groundwater fluxes via greenfall sustain G. alogus populations despite their trivial magnitude compared to stream discharge and cottonwood transpiration. Primary consumers in turn provide dietary water to higher trophic levels (e.g., abundant and speciose birds in the region) through trophic pathways, thereby fueling secondary production from the bottom up. Thus, riparian trees root animals in the regional water cycle

    Successful conservation of global waterbird populations depends on effective governance

    Get PDF
    Understanding global patterns of biodiversity change is crucial for conservation research, policies and practices. However, for most ecosystems, the lack of systematically collected data at a global level limits our understanding of biodiversity changes and their local-scale drivers. Here we address this challenge by focusing on wetlands, which are among the most biodiverse and productive of any environments and which provide essential ecosystem services, but are also amongst the most seriously threatened ecosystems. Using birds as an indicator taxon of wetland biodiversity, we model time-series abundance data for 461 waterbird species at 25,769 survey sites across the globe. We show that the strongest predictor of changes in waterbird abundance, and of conservation efforts having beneficial effects, is the effective governance of a country. In areas in which governance is on average less effective, such as western and central Asia, sub-Saharan Africa and South America, waterbird declines are particularly pronounced; a higher protected area coverage of wetland environments facilitates waterbird increases, but only in countries with more effective governance. Our findings highlight that sociopolitical instability can lead to biodiversity loss and undermine the benefit of existing conservation efforts, such as the expansion of protected area coverage. Furthermore, data deficiencies in areas with less effective governance could lead to underestimations of the extent of the current biodiversity crisis.</p

    Comparative feeding ecology of shortfin mako, blue and thresher sharks in the California Current.

    Get PDF
    Abstract This study describes the feeding ecology of three pelagic shark species in the California Current: shortfin mako (Isurus oxyrinchus); blue (Prionace glauca); and thresher (Alopias vulpinus) sharks. Stomach contents of sharks collected from 2002 to 2008 were identified to the lowest taxonomic level and analyzed using univariate and multivariate methods. Of 330 mako sharks sampled (53 to 248 cm fork length [FL]), 238 stomachs contained 42 prey taxa, with jumbo squid (Dosidicus gigas) and Pacific saury (Cololabis saira) representing the most important prey based on the geometric index of importance (GII). In addition, 158 blue sharks were sampled (76 to 248 cm FL) and 114 stomachs contained 38 prey taxa, with jumbo and Gonatus spp. squids representing the most important prey. Lastly, 225 thresher sharks were sampled (108 to 228 cm FL) and 157 stomachs contained 18 prey taxa with northern anchovy (Engraulis mordax) and Pacific sardine (Sardinops sagax) identified as the most important prey. Overall, mako sharks had the most diverse diet based upon Simpson&apos;s diversity index (1/D) (8.43±1.16), feeding on many species of teleosts and cephalopods, followed by blue sharks (6.20±2.11) which consumed a wide range of prey (primarily cephalopods), while thresher sharks were most specialized (2.62±0.34), feeding primarily on coastal pelagic teleosts. Dietary overlap was lowest between blue and thresher sharks (Sørensen similarity index00.321 and Simplified Morisita Horn index0 0.006), and seasonal variability in diet was greatest for blue sharks (Simplified Morisita Horn index0 0.260, Analysis of Similarity (ANOSIM) p&lt;0.001). In addition, size class, and subregion were significant factors that affected diet of each species differently (ANOSIM p&lt;0.001). Despite similarities in life history characteristics and spatial and temporal overlap in habitat, diets of these three common shark species are distinct in the California Current

    Comparative feeding ecology of shortfin mako, blue and thresher sharks in the California Current.

    Get PDF
    Abstract This study describes the feeding ecology of three pelagic shark species in the California Current: shortfin mako (Isurus oxyrinchus); blue (Prionace glauca); and thresher (Alopias vulpinus) sharks. Stomach contents of sharks collected from 2002 to 2008 were identified to the lowest taxonomic level and analyzed using univariate and multivariate methods. Of 330 mako sharks sampled (53 to 248 cm fork length [FL]), 238 stomachs contained 42 prey taxa, with jumbo squid (Dosidicus gigas) and Pacific saury (Cololabis saira) representing the most important prey based on the geometric index of importance (GII). In addition, 158 blue sharks were sampled (76 to 248 cm FL) and 114 stomachs contained 38 prey taxa, with jumbo and Gonatus spp. squids representing the most important prey. Lastly, 225 thresher sharks were sampled (108 to 228 cm FL) and 157 stomachs contained 18 prey taxa with northern anchovy (Engraulis mordax) and Pacific sardine (Sardinops sagax) identified as the most important prey. Overall, mako sharks had the most diverse diet based upon Simpson&apos;s diversity index (1/D) (8.43±1.16), feeding on many species of teleosts and cephalopods, followed by blue sharks (6.20±2.11) which consumed a wide range of prey (primarily cephalopods), while thresher sharks were most specialized (2.62±0.34), feeding primarily on coastal pelagic teleosts. Dietary overlap was lowest between blue and thresher sharks (Sørensen similarity index00.321 and Simplified Morisita Horn index0 0.006), and seasonal variability in diet was greatest for blue sharks (Simplified Morisita Horn index0 0.260, Analysis of Similarity (ANOSIM) p&lt;0.001). In addition, size class, and subregion were significant factors that affected diet of each species differently (ANOSIM p&lt;0.001). Despite similarities in life history characteristics and spatial and temporal overlap in habitat, diets of these three common shark species are distinct in the California Current

    Multitaxonomic Diversity Patterns along a Desert Riparian–Upland Gradient

    Get PDF
    Riparian areas are noted for their high biodiversity, but this has rarely been tested across a wide range of taxonomic groups. We set out to describe species richness, species abundance, and community similarity patterns for 11 taxonomic groups (forbs & grasses, shrubs, trees, solpugids, spiders, scarab beetles, butterflies, lizards, birds, rodents, and mammalian carnivores) individually and for all groups combined along a riparian–upland gradient in semiarid southeastern Arizona, USA. Additionally, we assessed whether biological characteristics could explain variation in diversity along the gradient using five traits (trophic level, body size, life span, thermoregulatory mechanism, and taxonomic affiliation). At the level of individual groups diversity patterns varied along the gradient, with some having greater richness and/or abundance in riparian zones whereas others were more diverse and/or abundant in upland zones. Across all taxa combined, riparian zones contained significantly more species than the uplands. Community similarity between riparian and upland zones was low, and beta diversity was significantly greater than expected for most taxonomic groups, though biological traits explained little variance in diversity along the gradient. These results indicate heterogeneity amongst taxa in how they respond to the factors that structure ecological communities in riparian landscapes. Nevertheless, across taxonomic groups the overall pattern is one of greater species richness and abundance in riparian zones, coupled with a distinct suite of species

    Comparison of Methods for Detection of Blastocystis Infection in Routinely Submitted Stool Samples, and also in IBS/IBD Patients in Ankara, Turkey

    Get PDF
    BACKGROUND: This study compared diagnostic methods for identifying Blastocystis in stool samples, and evaluated the frequency of detection of Blastocystis in patients with irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). RESULTS AND DISCUSSION: From a set of 105 stool specimens submitted for routine parasitological analysis, 30 were identified as positive for Blastocystis by the culture method. From that group of 30 positives, Lugol's stain, trichrome staining, and an immunofluorescence assay identified 11, 15, and 26 samples as positive respectively. Using culture as a standard, the sensitivity of Lugol's stain was 36.7%, trichrome staining was 50%, and the IFA stain was 86.7%. The specificity of Lugol's stain was 91%, trichrome staining was 100%, and the IFA stain was 97.3%. In the group of 27 IBS and IBD patients, using all methods combined, we detected Blastocystis in 67% (18/27) of the patients. Blastocystis was detected in 33% (2/6) of IBD patients and 76% (16/21) of IBS patients. For comparison, trichrome staining alone, the method most frequently used in many countries, would have only identified Blastocystis infection in 29% (6/21) of the IBS patients. No parasitic co-infections were identified in the IBS/IBD patients. Most Blastocystis-positive IBS/IBD patients were over 36 with an average length of illness of 4.9 years. CONCLUSIONS: Most IBS patients in this study were infected with Blastocystis. IFA staining may be a useful alternative to stool culture, especially if stool specimens have been chemically preserved

    Age- and region-specific hepatitis B prevalence in Turkey estimated using generalized linear mixed models: a systematic review

    Get PDF
    Toy M, Önder FO, Wörmann T, et al. Age- and region-specific hepatitis B prevalence in Turkey estimated using generalized linear mixed models: a systematic review. BMC infectious diseases. 2011;11(1): 337.BACKGROUND: To provide a clear picture of the current hepatitis B situation, the authors performed a systematic review to estimate the age- and region-specific prevalence of chronic hepatitis B (CHB) in Turkey. METHODS: A total of 339 studies with original data on the prevalence of hepatitis B surface antigen (HBsAg) in Turkey and published between 1999 and 2009 were identified through a search of electronic databases, by reviewing citations, and by writing to authors. After a critical assessment, the authors included 129 studies, divided into categories: 'age-specific'; 'region-specific'; and 'specific population group'. To account for the differences among the studies, a generalized linear mixed model was used to estimate the overall prevalence across all age groups and regions. For specific population groups, the authors calculated the weighted mean prevalence. RESULTS: The estimated overall population prevalence was 4.57, 95% confidence interval (CI): 3.58, 5.76, and the estimated total number of CHB cases was about 3.3 million. The outcomes of the age-specific groups varied from 2.84, (95% CI: 2.60, 3.10) for the 0-14-year olds to 6.36 (95% CI: 5.83, 6.90) in the 25-34-year-old group. CONCLUSION: There are large age-group and regional differences in CHB prevalence in Turkey, where CHB remains a serious health problem

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2&nbsp;m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315&nbsp;cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean&nbsp;=&nbsp;3.0&nbsp;\ub1&nbsp;2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6&nbsp;\ub1&nbsp;2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7&nbsp;\ub1&nbsp;2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km &lt;sup&gt;2&lt;/sup&gt; resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km &lt;sup&gt;2&lt;/sup&gt; pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore