127 research outputs found

    The first confirmation of V-type asteroids among the Mars crosser population

    Get PDF
    The Mars crossing region constitutes a path to deliver asteroids from the Inner Main Belt to the Earth crossing space. While both the Inner Main Belt and the population of Earth crossing asteroids contains a significant fraction of asteroids belonging to the V taxonomic class, only two of such V-type asteroids has been detected in the Mars crossing region up to now. In this work, we searched for asteroids belonging to the V class among the population of Mars crossing asteroids, in order to support alternative paths to the delivery of this bodies into the Earth crossing region. We selected 18 candidate V-type asteroids in the Mars crossing region using observations contained in the Sloan Digital Sky Survey Moving Objects Catalog. Then, we observed 4 of these candidates to take their visible spectra using the Southern Astrophysical Research Telescope (SOAR). We also performed the numerical simulation of the orbital evolution of the observed asteroids. We confirmed that 3 of the observed asteroids belong to the V class, and one of these may follow a path that drives it to an Earth collision in some tens of million years

    The spectrum of (136199) Eris between 350 and 2350 nm: Results with X-Shooter

    Full text link
    X-Shooter is the first second-generation instrument for the ESO-VLT. It as a spectrograph covering the 300 - 2480 nm spectral range at once with a high resolving power. These properties enticed us to observe (136199) Eris during the science verification of the instrument. The target has numerous absorption features in the optical and near-infrared domain which has been observed by different authors, showing differences in their positions and strengths. We attempt at constraining the existence of super-volatiles, e.g., CH4, CO and N2, and in particular try to understand the physical-chemical state of the ices on Eris' surface. We observed Eris in the 300-2480 nm range and compared the newly obtained spectra with those available in the literature. We identified several absorption features, measuring their positions and depth and compare them with those of reflectance of pure methane ice obtained from the optical constants of this ice at 30 K to study shifts in their positions and find a possible explanation for their origin. We identify several absorption bands in the spectrum all consistent with the presence of CH4 ice. We do not identify bands related with N2 or CO. We measured the central wavelengths of the bands and find variable shifts, with respect to the spectrum of pure CH4 at 30 K. Conclusions. Based on these wavelength shifts we confirm the presence of a dilution of CH4 in other ice on the surface of Eris and the presence of pure CH4 spatially segregated. The comparison of the centers and shapes of these bands with previous works suggest that the surface is heterogeneous. The absence of the 2160 nm band of N2 can be explained if the surface temperature is below 35.6 K, the transition temperature between the alpha and beta phases of this ice. Our results, including the reanalysis of data published elsewhere, point to an heterogeneous surface on Eris.Comment: 15 pages, 5 figure

    Effect of ''O IND. 2' POT. +', ''H IND. 2' POT. +' + ''O IND. 2' POT. +', and ''N IND. 2' POT.+' + ''O IND. 2'POT. +' ion-beam irradiation on the field emission properties of carbon nanotubes

    Get PDF
    The effect of O2 +, H2 ++ O2 +, and N2 ++ O2 +ion-beamirradiation of carbon nanotubes(CNTs) films on the chemical and electronic properties of the material is reported. The CNTs were grown by the chemical vapor deposition technique (CVD) on silicon TiN coated substrates previously decorated with Ni particles. The Ni decoration and TiN coating were successively deposited by ion-beam assisted deposition (IBAD) and afterwards the nanotubes were grown. The whole deposition procedure was performed in situ as well as the study of the effect of ion-beamirradiation on the CNTs by x-ray photoelectron spectroscopy(XPS). Raman scattering, field-effect emission gun scanning electron microscopy (FEG-SEM), and field emission (FE) measurements were performed ex situ. The experimental data show that: (a) the presence of either H2 + or N2 + ions in the irradiationbeam determines the oxygen concentration remaining in the samples as well as the studied structural characteristics; (b) due to the experimental conditions used in the study, no morphological changes have been observed after irradiation of the CNTs; (c) the FE experiments indicate that the electron emission from the CNTs follows the Fowler-Nordheim model, and it is dependent on the oxygen concentration remaining in the samples; and (d) in association with FE results, the XPS data suggest that the formation of terminal quinone groups decreases the CNTs work function of the material.FAPESP (05/53926-1)CNPqUBA (IP X191)CONICET (PIP 5215; 5959)ANPCyT (PICT 10-25834; 06-10621)CAPES - Ministério de Educación, Ciência y Tecnologia da Argentina, Secretaria de Políticas Universitárias (SPU

    Composition of KBO (50000) Quaoar

    Get PDF
    Aims. The objective of this work is to investigate the physical properties of objects beyond Neptune-the new frontiers of the Solar System-and in particular to study the surface composition of (50 000) Quaoar, a classical Transneptunian (or Kuiper Belt) object. Because of its distance from the Sun, Quaoar is expected to have preserved, to a degree, its original composition. Our goals are to determine to what degree this is true and to shed light on the chemical evolution of this icy body. Methods. We present new near-infrared (3.6 and 4.5 mu m) photometric data obtained with the Spitzer Space Telescope. These data complement high resolution, low signal-to-noise spectroscopic and photometric data obtained in the visible and near-infrared (0.4-2.3 mu m) at VLT-ESO and provide an excellent set of constraints in the model calculation process. We perform spectral modeling of the entire wavelength range-from 0.3 to 4.5 mu m by means of a code based on the Shkuratov radiative transfer formulation of the slab model. We also attempt to determine the temperature of H(2)O ice making use of the crystalline feature at 1.65 mu m. Results. We present a model confirming previous results regarding the presence of crystalline H(2)O and CH(4) ice, as well as C(2)H(6) and organic materials, on the surface of this distant icy body. We attempt a measurement of the temperature and find that stronger constraints on the composition are needed to obtain a precise determination. Conclusions. Model fits indicate that N(2) may be a significant component, along with a component that is bright at lambda > 3.3 mu m, which we suggest at this time could be amorphous H(2)O ice in tiny grains or thin grain coatings. Irradiated crystalline H(2)O could be the source of small-grained amorphous H(2)O ice. The albedo and composition of Quaoar, in particular the presence of N(2), if confirmed, make this TNO quite similar to Triton and Pluto

    The stellar occultation by Makemake on 2011 April 23

    Full text link
    We have taken advantage of a stellar occultation by the dwarf planet Makemake on 2011 April 23, to determine several of its main physical properties. We present results from a multisite campaign with 8 positive occultation detections from 5 different sites, including data from the 8-m VLT and 3.5-m NTT telescopes in Chile, which have very high temporal resolution. Because the star was significantly fainter than Makemake (setting a record in the magnitude of a star whose occultation has been detected), the occultation resulted in a drop of just ~0.3 mag in the lightcurves. From the lightcurves we have been able to determine the size and shape of the body, its geometric albedo and constraints on its atmosphere

    The Trans-Neptunian Object (84922) 2003 VS2 through Stellar Occultations

    Get PDF
    We present results from three world-wide campaigns that resulted in the detections of two single-chord and one multi-chord stellar occultations by the plutino object (84922) 2003 VS2. From the single-chord occultations in 2013 and 2014 we obtained accurate astrometric positions for the object, while from the multi-chord occultation on 2014 November 7, we obtained the parameters of the best-fitting ellipse to the limb of the body at the time of occultation. We also obtained short-term photometry data for the body in order to derive its rotational phase during the occultation. The rotational light curve present a peak-to-peak amplitude of 0.141 ± 0.009 mag. This allows us to reconstruct the 3D shape of the body, with principal semi-axes of a = 313.8 ± 7.1 km, = - + b 265.5 9.8 8.8 km, and = - + c 247.3 43.6 26.6 km, which is not consistent with a Jacobi triaxial equilibrium figure. The derived spherical volume equivalent diameter of - + 548.3 44.6 29.5 km is about 5% larger than the radiometric diameter of 2003 VS2 derived from Herschel data of 523 ± 35 km, but still compatible with it within error bars. From those results we can also derive the geometric albedo ( - + 0.123 0.014 0.015) and, under the assumption that the object is a Maclaurin spheroid, the density r = - + 1400 300 1000 for the plutino. The disappearances and reappearances of the star during the occultations do not show any compelling evidence for a global atmosphere considering a pressure upper limit of about 1 microbar for a pure nitrogen atmosphere, nor secondary features (e.g., rings or satellite) around the main body.Fil: Benedetti Rossi, Gustavo. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; Brasil. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. Laboratório Interinstitucional de e-Astronomia; BrasilFil: Santos Sanz, P.. Instituto de Astrofísica de Andalucía; EspañaFil: Ortiz, J. L.. Instituto de Astrofísica de Andalucía; EspañaFil: Assafin, M.. Observatório do Valongo; BrasilFil: Sicardy, B.. Sorbonne University; Francia. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Morales, N.. Instituto de Astrofísica de Andalucía; EspañaFil: Vieira Martins, R.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; Brasil. Laboratório Interinstitucional de e-Astronomia; Brasil. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Duffard, R.. Instituto de Astrofísica de Andalucía; EspañaFil: Braga Ribas, F.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; Brasil. Laboratório Interinstitucional de e-Astronomia; Brasil. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. Universidade Tecnologia Federal do Parana; BrasilFil: Rommel, F. L.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; Brasil. Laboratório Interinstitucional de e-Astronomia; BrasilFil: Camargo, J. I. B.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; Brasil. Laboratório Interinstitucional de e-Astronomia; BrasilFil: Desmars, J.. Instituto de Astrofísica de Andalucía; EspañaFil: Colas, A. F.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Vachier, F.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Alvarez Candal, A.. Ministério de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Fernández Valenzuela, E.. University of Central Florida; Estados UnidosFil: Almenares, L.. Universidad de la Republica; UruguayFil: Artola, R.. Estación Astrofísica de Bosque Alegre; ArgentinaFil: Baum, T. P.. Observatoire Astronomique des Makes; FranciaFil: Behrend, R.. Observatoire de Genève; ItaliaFil: Bérard, D.. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Bianco, F. B.. University of Delaware; Estados Unidos. University of New York; Estados UnidosFil: Brosch, N.. Universitat Tel Aviv; IsraelFil: Ceretta, A.. Observatorio Astronómico Los Molinos; UruguayFil: Colazo, C. A.. Estación Astrofísica de Bosque Alegre; ArgentinaFil: Gomes Junior, A. R.. Laboratório Interinstitucional de e-Astronomia; Brasil. Universidade Estadual Paulista Julio de Mesquita Filho. Faculdade de Engenharia; BrasilFil: Ivanov, V. D.. Observatorio Europeo del Sur; AlemaniaFil: Jehin, E.. Université de Liège; BélgicaFil: Kaspi, S.. Universitat Tel Aviv; IsraelFil: Gil Hutton, Ricardo Alfredo. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; Argentin

    J-PLUS DR3: Galaxy-Star-Quasar classification

    Full text link
    The Javalambre Photometric Local Universe Survey (J-PLUS) is a 12-band photometric survey using the 83-cm JAST telescope. Data Release 3 includes 47.4 million sources (29.8 million with r21r \le 21) on 3192 deg2^2 (2881 deg2^2 after masking). J-PLUS DR3 only provides star-galaxy classification so that quasars are not identified from the other sources. Given the size of the dataset, machine learning methods could provide a valid alternative classification and a solution to the classification of quasars. Our objective is to classify J-PLUS DR3 sources into galaxies, stars and quasars, outperforming the available classifiers in each class. We use an automated machine learning tool called {\tt TPOT} to find an optimized pipeline to perform the classification. The supervised machine learning algorithms are trained on the crossmatch with SDSS DR12, LAMOST DR7 and \textit{Gaia} DR3. We checked that the training set of about 570 thousand galaxies, one million stars and 220 thousand quasars is both representative and pure to a good degree. We considered 37 features: besides the twelve photometric bands with their errors, six colors, four morphological parameters, galactic extinction with its error and the PSF relative to the corresponding pointing. After exploring numerous pipeline possibilities through the TPOT genetic algorithm, we found that XGBoost provides the best performance: the AUC for galaxies, stars and quasars is above 0.99 and the average precision is above 0.99 for galaxies and stars and 0.94 for quasars. XGBoost outperforms the star-galaxy classifiers already provided in J-PLUS DR3 and also efficiently classifies quasars. We also found that photometry was very important in the classification of quasars, showing the relevance of narrow-band photometry.Comment: 14 pages, 17 figure

    The changing material around (2060) Chiron from an occultation on 2022 December 15

    Full text link
    We could accurately predict the shadow path and successfully observe an occultation of a bright star by Chiron on 2022 December 15. The Kottamia Astronomical Observatory in Egypt did not detect the occultation by the solid body, but we detected three extinction features in the light curve that had symmetrical counterparts with respect to the central time of the occultation. One of the features is broad and shallow, whereas the other two features are sharper with a maximum extinction of \sim25%\% at the achieved spatial resolution of 19 km per data point. From the Wise observatory in Israel, we detected the occultation caused by the main body and several extinction features surrounding the body. When all the secondary features are plotted in the sky plane we find that they can be caused by a broad \sim580 km disk with concentrations at radii of 325 \pm 16 km and 423 \pm 11 km surrounding Chiron. At least one of these structures appears to be outside the Roche limit. The ecliptic coordinates of the pole of the disk are λ\lambda = 151 ±^\circ~\pm 8^\circ and β\beta = 18 ±^\circ~\pm 11^\circ, in agreement with previous results. We also show our long-term photometry indicating that Chiron had suffered a brightness outburst of at least 0.6 mag between March and September 2021 and that Chiron was still somewhat brighter at the occultation date than at its nominal pre-outburst phase. The outermost extinction features might be consistent with a bound or temporarily bound structure associated with the brightness increase. However, the nature of the brightness outburst is unclear, and it is also unclear whether the dust or ice released in the outburst could be feeding a putative ring structure or if it emanated from it.Comment: 6 pages, 4, figure

    TNOs are Cool: A survey of the trans-Neptunian region V. Physical characterization of 18 Plutinos using Herschel PACS observations

    Full text link
    We present Herschel PACS photometry of 18 Plutinos and determine sizes and albedos for these objects using thermal modeling. We analyze our results for correlations, draw conclusions on the Plutino size distribution, and compare to earlier results. Flux densities are derived from PACS mini scan-maps using specialized data reduction and photometry methods. In order to improve the quality of our results, we combine our PACS data with existing Spitzer MIPS data where possible, and refine existing absolute magnitudes for the targets. The physical characterization of our sample is done using a thermal model. Uncertainties of the physical parameters are derived using customized Monte Carlo methods. The correlation analysis is performed using a bootstrap Spearman rank analysis. We find the sizes of our Plutinos to range from 150 to 730 km and geometric albedos to vary between 0.04 and 0.28. The average albedo of the sample is 0.08 \pm 0.03, which is comparable to the mean albedo of Centaurs, Jupiter Family comets and other Trans-Neptunian Objects. We were able to calibrate the Plutino size scale for the first time and find the cumulative Plutino size distribution to be best fit using a cumulative power law with q = 2 at sizes ranging from 120-400 km and q = 3 at larger sizes. We revise the bulk density of 1999 TC36 and find a density of 0.64 (+0.15/-0.11) g cm-3. On the basis of a modified Spearman rank analysis technique our Plutino sample appears to be biased with respect to object size but unbiased with respect to albedo. Furthermore, we find biases based on geometrical aspects and color in our sample. There is qualitative evidence that icy Plutinos have higher albedos than the average of the sample.Comment: 18 pages, 8 figures, 8 tables, accepted for publication in A&
    corecore