56 research outputs found

    Levodopa-Induced Dyskinesia Is Associated with Increased Thyrotropin Releasing Hormone in the Dorsal Striatum of Hemi-Parkinsonian Rats

    Get PDF
    Background Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine) therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition. Methodology/Principal Findings Quantitative real-time polymerase chain reaction (PCR) was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH) was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes. Conclusions/Significance TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.Morris K. Udall Center for Excellence in Parkinson’s Research at MGH/MITNational Institutes of Health (U.S.) (NIH NS38372)American Parkinson Disease Association, Inc.University of Alabama at BirminghamMassachusetts General HospitalNational Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIDDK/NIH grant R01 DK58148)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NINDS/NIH grant NS045231)Stanley H. and Sheila G. Sydney FundMichael J. Fox Foundation for Parkinson's Researc

    Repeated Methamphetamine Administration Differentially Alters Fos Expression in Caudate-Putamen Patch and Matrix Compartments and Nucleus Accumbens

    Get PDF
    Background: The repeated administration of psychostimulant drugs produces a persistent and long-lasting increase (‘‘sensitization’’) in their psychomotor effects, which is thought to be due to changes in the neural circuitry that mediate these behaviors. One index of neuronal activation used to identify brain regions altered by repeated exposure to drugs involves their ability to induce immediate early genes, such as c-fos. Numerous reports have demonstrated that past drug experience alters the ability of drugs to induce c-fos in the striatum, but very few have examined Fos protein expression in the two major compartments in the striatum—the so-called patch/striosome and matrix. Methodology/Principal Findings: In the present study, we used immunohistochemistry to investigate the effects of pretreatment with methamphetamine on the ability of a subsequent methamphetamine challenge to induce Fos protein expression in the patch and matrix compartments of the dorsolateral and dorsomedial caudate-putamen and in the ventral striatum (nucleus accumbens). Animals pretreated with methamphetamine developed robust psychomotor sensitization. A methamphetamine challenge increased the number of Fos-positive cells in all areas of the dorsal and ventral striatum. However, methamphetamine challenge induced Fos expression in more cells in the patch than in the matrix compartment in the dorsolateral and dorsomedial caudate-putamen. Furthermore, past experience with methamphetamine increased the number of methamphetamine-induced Fos positive cells in the patch compartment of the dorsal caudate putamen, but no

    Expression of amphetamine sensitization is associated with recruitment of a reactive neuronal population in the nucleus accumbens core

    Get PDF
    Rationale: Repeated exposure to psychostimulant drugs causes a long-lasting increase in the psychomotor and reinforcing effects of these drugs and an array of neuroadaptations. One such alteration is a hypersensitivity of striatal activity such that a low dose of amphetamine in sensitized animals produces dorsal striatal activation patterns similar to acute treatment with a high dose of amphetamine. Objectives: To extend previous findings of striatal hypersensitivity with behavioral observations and with cellular activity in the nucleus accumbens and prefrontal cortex in sensitized animals. Materials and methods: Rats treated acutely with 0, 1, 2.5, or 5 mg/kg i.p. amphetamine and sensitized rats challenged with 1 mg/kg i.p. amphetamine were scored for stereotypy, rearing, and grooming, and locomotor activity recorded. c-fos positive nuclei were quantified in the nucleus accumbens and prefrontal cortex after expression of sensitization with 1 mg/kg i.p. amphetamine. Results: Intense stereotypy was seen in animals treated acutely with 5 mg/kg amphetamine, but not in the sensitized group treated with 1 mg/kg amphetamine. The c-fos response to amphetamine in the accumbens core was augmented in amphetamine-pretreated animals with a shift in the distribution of optical density, while no effect of sensitization was seen in the nucleus accumbens shell or prefrontal cortex. Conclusions A lack of stereotypy in the sensitized group indicates a dissociation of behavioral responses to amphetamine and striatal immediate-early gene activation patterns. The increase in c-fos positive nuclei and shift in the distribution of optical density observed in the nucleus accumbens core suggests recruitment of a new population of neurons during expression of sensitization

    Mildly elevated lactate levels are associated with microcirculatory flow abnormalities and increased mortality: a microSOAP post hoc analysis

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordBACKGROUND: Mildly elevated lactate levels (i.e., 1-2 mmol/L) are increasingly recognized as a prognostic finding in critically ill patients. One of several possible underlying mechanisms, microcirculatory dysfunction, can be assessed at the bedside using sublingual direct in vivo microscopy. We aimed to evaluate the association between relative hyperlactatemia, microcirculatory flow, and outcome. METHODS: This study was a predefined subanalysis of a multicenter international point prevalence study on microcirculatory flow abnormalities, the Microcirculatory Shock Occurrence in Acutely ill Patients (microSOAP). Microcirculatory flow abnormalities were assessed with sidestream dark-field imaging. Abnormal microcirculatory flow was defined as a microvascular flow index (MFI)  1.5 mmol/L was independently associated with a MFI < 2.6 (OR 2.5, 95% CI 1.1-5.7, P = 0.027). CONCLUSIONS: In a heterogeneous ICU population, a single-spot mildly elevated lactate level (even within the reference range) was independently associated with increased mortality and microvascular flow abnormalities. In vivo microscopy of the microcirculation may be helpful in discriminating between flow- and non-flow-related causes of mildly elevated lactate levels. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01179243 . Registered on August 3, 2010

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations
    corecore