27 research outputs found

    Extracellular calcium-sensing receptor : studies of gene expression and regulation

    No full text
    The calcium-sensing receptor (CaSR), expressed in parathyroid, thyroid and kidney, is essential for maintenance of calcium homeostasis. Extracellular calcium (Ca2+o) affects several hepatic functions including bile secretion, metabolic activity, regeneration, and the response to xenobiotics. We have demonstrated the presence, in hepatocytes, of a functional CaSR. Western blot analysis using a specific CaSR antibody showed staining in both whole liver and hepatocyte extracts. Immunohistochemistry and in situ hybridization of rat liver sections showed expression of CaSR protein and mRNA by a subset of hepatocytes. CaSR agonists, gadolinium (Gd3+; 0.5-3.0 mM) and spermine (1.25-20 mM), in the absence of Ca2+o, elicited dose-related increases in intracellular calcium (Ca2+i) in isolated rat hepatocytes loaded with Fura 2-AM and this response was abrogated when IP3-sensitive calcium pools had been depleted by pretreatment with either thapsigargin or phenylephrine. Addition of the deschloro-phenylalkylamine compound, NPS-R467, but not the S enantiomer, NPS-S467, increased the sensitivity of the Ca 2+i mobilization response to 1.25 mM spermine. Bile flow ceased after Ca2+o withdrawal and its recovery was enhanced by spermine in isolated perfused liver preparations. Ca2+ and Gd3+ increased bile flow and NPS-R467 but not the S compound enhanced the response to a sub maximal Ca2+ concentration. Thus, the data demonstrate that rat hepatocytes harbor a CaSR capable of mobilizing Ca2+i from IP3-sensitive stores and that activation of the CaSR stimulates bile flow.The human CASR gene contains at least 7 exons and spans more than 100 kilobases. Little is known about the 5' flanking region and transcriptional regulatory sequences that control expression of the CASR in specific cells. The human CASR gene has two promoters (P1 and P2) yielding alternative transcripts containing either exon 1A or exon 1B 5'-untranslated region sequences that splice to exon 2 some 242 bp before the ATG translation start site. We have cloned the CASR promoter and transcriptional start sites were identified in parathyroid gland and in human thyroid C-cell (TT) cells; that for promoter P1 lies 27-bp downstream of a TATA box, whereas that for promoter P2, which lacks a TATA box, lies in a GC-rich region

    CALCIUM-SENSING RECEPTOR GENE: REGULATION OF EXPRESSION

    Get PDF
    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5’-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2-7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes – promoter methylation of the GC-rich P2 promoter, histone acetylation – as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the tumor suppressor activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2 – the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR––the calciostat––is regulated physiologically and pathophysiologically at the gene level

    Effect of Menin Deletion in Early Osteoblast Lineage on the Mineralization of an In Vitro 3D Osteoid-like Dense Collagen Gel Matrix

    No full text
    Bone has a complex microenvironment formed by an extracellular matrix (ECM) composed mainly of mineralized type I collagen fibres. Bone ECM regulates signaling pathways important in the differentiation of osteoblast-lineage cells, necessary for bone mineralization and in preserving tissue architecture. Compared to conventional 2D cell cultures, 3D in vitro models may better mimic bone ECM and provide an environment to support osteoblastic differentiation. In this study, a biomimetic 3D osteoid-like dense collagen gel model was used to investigate the role of the nuclear protein menin plays in osteoblastic differentiation and matrix mineralization. Previous in vitro and in vivo studies have shown that when expressed at later stages of osteoblastic differentiation, menin modulates osteoblastogenesis and regulates bone mass in adult mice. To investigate the role of menin when expressed at earlier stages of the osteoblastic lineage, conditional knockout mice in which the Men1 gene is specifically deleted early (i.e., at the level of the pluripotent mesenchymal stem cell lineage), where generated and primary calvarial osteoblasts were cultured in plastically compressed dense collagen gels for 21 days. The proliferation, morphology and differentiation of isolated seeded primary calvarial osteoblasts from knockout (Prx1-Cre; Men1f/f) mice were compared to those isolated from wild-type (Men1f/f) mice. Primary calvarial osteoblasts from knockout and wild-type mice did not show differences in terms of proliferation. However, in comparison to wild-type cells, primary osteoblast cells derived from knockout mice demonstrated deficient mineralization capabilities and an altered gene expression profile when cultured in 3D dense collagen gels. In summary, these findings indicate that when expressed at earlier stages of osteoblast differentiation, menin is important in maintaining matrix mineralization in 3D dense collagen gel matrices, in vitro

    Calcium-sensing receptor dimerizes in the endoplasmic reticulum: biochemical and biophysical characterization of CASR mutants retained intracellularly

    No full text
    Calcium-sensing receptor (CASR), expressed in parathyroid gland and kidney, is a critical regulator of extracellular calcium homeostasis. This G protein-coupled receptor exists at the plasma membrane as a homodimer, although it is unclear at which point in the biosynthetic pathway dimerization occurs. To address this issue, we have analyzed wild-type and mutant CASRs harboring R66H, R66C or N583X-inactivating mutations identified in familial hypocalciuric hypercalcemia/neonatal severe hyperparathyroid patients, which were transiently expressed in kidney cells. All mutants were deficient in cell signaling responses to extracellular CASR ligands relative to wild-type. All mutants, although as well expressed as wild-type, lacked mature glycosylation, indicating impaired trafficking from the endoplasmic reticulum (ER). Dimerized forms of wild-type, R66H and R66C mutants were present, but not of the N583X mutant. By immunofluorescence confocal microscopy of non-permeabilized cells, although cell surface expression was observed for the wild-type, little or none was seen for the mutants. In permeabilized cells, perinuclear staining was observed for both wild-type and mutants. By colocalization fluorescence confocal microscopy, the mutant CASRs were localized within the ER but not within the Golgi apparatus. By the use of photobleaching fluorescence resonance energy transfer microscopy, it was demonstrated that the wild-type, R66H and R66C mutants were dimerized in the ER, whereas the N583X mutant was not. Hence, constitutive CASR dimerization occurs in the ER and is likely to be necessary, but is not sufficient, for exit of the receptor from the ER and trafficking to the cell surface

    Functional Analysis of a Type 1 Parathyroid Hormone Receptor Intracellular Tail Mutant [KRK(484-6)AAA]: Effects on Second Messenger Generation and Cellular Targeting

    No full text
    The parathyroid hormone receptor type 1 (PTHR1) is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP) and primarily signals via intracellular pathways involving adenylyl cyclase and phospholipase C. The intracellular tail domain of the PTHR1 contributes to G protein subunit coupling that is important for second messenger signalling. In addition, the intracellular domain has a potential nuclear localization sequence (NLS) that, if functional, could point to an intracrine role for the receptor. In the present study, we have utilized 2 sets of constructs that employ either a [KRK(484-486)AAA](3Ala) mutation in the putative NLS or the non-mutant counterpart and included (a) the full-length rat PTHR1 with FLAG and c-myc epitope tags at the N-terminus and C-terminus, respectively (designated as PTHR1(3Ala)-TAG and PTHR1-TAG); and (b) only the putative NLS-containing intracellular domain (471-488), with green fluorescent protein (GFP) fused to the C-terminus (designated as GFP-(3Ala)471-488 or GFP-471-488). Porcine kidney LLC-PK1 cells stably expressing the PTHR1(3Ala)-TAG exhibited reduced signalling via both cAMP and cytosolic calcium transients in spite of greater cell surface expression relative to cells expressing PTHR1-TAG. We also examined the ability of the intracellular tail to influence the cellular localization of a heterologous protein. LLC-PK1 cells transiently transfected with GFP-471-488, exhibited increased fluorescence within the nucleus, relative to cells transfected with GFP alone that was not observed when cells were transiently transfected with the mutated construct, GFP-(3Ala)471-488. However, LLC-PK1 cells transiently transfected with either the full-length PTHR1-TAG or the PTHR1(3Ala)-TAG constructs did not exhibit nuclear localization of these receptors. Moreover, mouse osteoblast-like cells (MC3T3-E1) transiently expressing PTHR1-TAG also failed to demonstrate nuclear localization, although both full-length PTHR1 constructs exhibited plasma membrane immunofluorescence in both cell lines. Thus, the 484-486 sequence is critical for the full signalling responsiveness of the intact PTHR1, but the putative nuclear localization signal may not function as such within the intact receptor

    Multiple Endocrine Neoplasia Type 1 Regulates TGFβ-Mediated Suppression of Tumor Formation and Metastasis in Melanoma

    No full text
    Over the past few decades, the worldwide incidence of cutaneous melanoma, a malignant neoplasm arising from melanocytes, has been increasing markedly, leading to the highest rate of skin cancer-related deaths. While localized tumors are easily removed by excision surgery, late-stage metastatic melanomas are refractory to treatment and exhibit a poor prognosis. Consequently, unraveling the molecular mechanisms underlying melanoma tumorigenesis and metastasis is crucial for developing novel targeted therapies. We found that the multiple endocrine neoplasia type 1 (MEN1) gene product Menin is required for the transforming growth factor beta (TGFβ) signaling pathway to induce cell growth arrest and apoptosis in vitro and prevent tumorigenesis in vivo in preclinical xenograft models of melanoma. We further identified point mutations in two MEN1 family members affected by melanoma that led to proteasomal degradation of the MEN1 gene product and to a loss of TGFβ signaling. Interestingly, blocking the proteasome degradation pathway using an FDA-approved drug and RNAi targeting could efficiently restore MEN1 expression and TGFβ transcriptional responses. Together, these results provide new potential therapeutic strategies and patient stratification for the treatment of cutaneous melanoma
    corecore