2,741 research outputs found

    LHC Charge Asymmetry as Constraint on Models for the Tevatron Top Anomaly

    Full text link
    The forward-backward asymmetry AFBttˉA_{FB}^{t\bar t} in top quark production at the Tevatron has been observed to be anomalously large by both CDF and D0. It has been suggested that a model with a WW' coupling to tdtd and ubub might explain this anomaly, and other anomalies in BB mesons. Single-top-quark production in this model is large, and arguably in conflict with Tevatron measurements. However the model might still be viable if AFBttˉA_{FB}^{t\bar t} is somewhat smaller than its current measured central value. We show that even with smaller couplings, the model can be discovered (or strongly excluded) at the LHC using the 2010 data sets. We find that a suitable charge-asymmetry measurement is a powerful tool that can be used to constrain this and other sources of anomalous single-top production, and perhaps other new high-energy charge-asymmetric processes.Comment: 25 pages, 4 figures, note adde

    Asymptotically distribution-free goodness-of-fit testing for tail copulas

    Get PDF
    Let (X1,Y1),,(Xn,Yn)(X_1,Y_1),\ldots,(X_n,Y_n) be an i.i.d. sample from a bivariate distribution function that lies in the max-domain of attraction of an extreme value distribution. The asymptotic joint distribution of the standardized component-wise maxima i=1nXi\bigvee_{i=1}^nX_i and i=1nYi\bigvee_{i=1}^nY_i is then characterized by the marginal extreme value indices and the tail copula RR. We propose a procedure for constructing asymptotically distribution-free goodness-of-fit tests for the tail copula RR. The procedure is based on a transformation of a suitable empirical process derived from a semi-parametric estimator of RR. The transformed empirical process converges weakly to a standard Wiener process, paving the way for a multitude of asymptotically distribution-free goodness-of-fit tests. We also extend our results to the mm-variate (m>2m>2) case. In a simulation study we show that the limit theorems provide good approximations for finite samples and that tests based on the transformed empirical process have high power.Comment: Published at http://dx.doi.org/10.1214/14-AOS1304 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Quantum computation with un-tunable couplings

    Get PDF
    Most quantum computer realizations require the ability to apply local fields and tune the couplings between qubits, in order to realize single bit and two bit gates which are necessary for universal quantum computation. We present a scheme to remove the necessity of switching the couplings between qubits for two bit gates, which are more costly in many cases. Our strategy is to compute in and out of carefully designed interaction free subspaces analogous to decoherence free subspaces, which allows us to effectively turn off and turn on the interactions between the encoded qubits. We give two examples to show how universal quantum computation is realized in our scheme with local manipulations to physical qubits only, for both diagonal and off diagonal interactions.Comment: 5 pages, 2 figure

    Nonexistense of global solutions of a quasilinear bi-hyperbolic equation with dynamical boundary conditions

    Get PDF
    In this work, the nonexistence of the global solutions to a class of initial boundary value problems with dissipative terms in the boundary conditions is considered for a quasilinear system of equations. The nonexistence proof is achieved by the use of a lemma due to O. Ladyzhenskaya and V.K. Kalantarov and by the usage of the so called generalized convexity method. In this method one writes down a functional which reflects the properties of dissipative boundary conditions and represents the norm of the solution in some sense, then proves that this functional satisfies the hypotheses of Ladyzhenskaya-Kalantarov lemma. Hence from the conclusion of the lemma one deduces that in a finite time t2t_2, this functional and hence the norm of the solution blows up

    Quantum correlation and classical correlation dynamics in the spin-boson model

    Full text link
    We study the quantum correlation and classical correlation dynamics in a spin-boson model. For two different forms of spectral density, we obtain analytical results and show that the evolutions of both correlations depend closely on the form of the initial state. At the end of evolution, all correlations initially stored in the spin system transfer to reservoirs. It is found that for a large family of initial states, quantum correlation remains equal to the classical correlation during the course of evolution. In addition, there is no increase in the correlations during the course of evolution.Comment: 10 pages, 5 figure

    Mechanisms of dynamic nuclear polarization in insulating solids

    Get PDF
    Dynamic nuclear polarization (DNP) is a technique used to enhance signal intensities in NMR experiments by transferring the high polarization of electrons to their surrounding nuclei. The past decade has witnessed a renaissance in the development of DNP, especially at high magnetic fields, and its application in several areas including biophysics, chemistry, structural biology and materials science. Recent technical and theoretical advances have expanded our understanding of established experiments: for example, the cross effect DNP in samples spinning at the magic angle. Furthermore, new experiments suggest that our understanding of the Overhauser effect and its applicability to insulating solids needs to be re-examined. In this article, we summarize important results of the past few years and provide quantum mechanical explanations underlying these results. We also discuss future directions of DNP and current limitations, including the problem of resolution in protein spectra recorded at 80–100 K.National Institute for Biomedical Imaging and Bioengineering (U.S.) (EB-002804)National Institute for Biomedical Imaging and Bioengineering (U.S.) (EB-001960)National Institute for Biomedical Imaging and Bioengineering (U.S.) (EB-003151)National Institute for Biomedical Imaging and Bioengineering (U.S.) (EB-002026

    Evidence for a dynamical ground state in the frustrated pyrohafnate Tb2Hf2O7

    Get PDF
    We report the physical properties of Tb2Hf2O7 based on ac magnetic susceptibility \chi_ac(T), dc magnetic susceptibility \chi(T), isothermal magnetization M(H), and heat capacity C_p(T) measurements combined with muon spin relaxation (\muSR) and neutron powder diffraction measurements. No evidence for long-range magnetic order is found down to 0.1 K. However, \chi_ac(T) data present a frequency-dependent broad peak (near 0.9 K at 16 Hz) indicating slow spin dynamics. The slow spin dynamics is further evidenced from the \muSR data (characterized by a stretched exponential behavior) which show persistent spin fluctuations down to 0.3 K. The neutron powder diffraction data collected at 0.1 K show a broad peak of magnetic origin (diffuse scattering) but no magnetic Bragg peaks. The analysis of the diffuse scattering data reveals a dominant antiferromagnetic interaction in agreement with the negative Weiss temperature. The absence of long-range magnetic order and the presence of slow spin dynamics and persistent spin fluctuations together reflect a dynamical ground state in Tb2Hf2O7.Comment: 11 pages and 8 figure

    Bounds for state-dependent quantum cloning

    Get PDF
    Due to the no-cloning theorem, the unknown quantum state can only be cloned approximately or exactly with some probability. There are two types of cloners: universal and state-dependent cloner. The optimal universal cloner has been found and could be viewed as a special state-dependent quantum cloner which has no information about the states. In this paper, we investigate the state-dependent cloning when the state-set contains more than two states. We get some bounds of the global fidelity for these processes. This method is not dependent on the number of the states contained in the state-set. It is also independent of the numbers of copying.Comment: 13 pages, 1 figure, to appear in Phys. Rev.

    Entanglement of a Single Spin-1 Object: An Example of Ubiquitous Entanglement

    Get PDF
    Using a single spin-1 object as an example, we discuss a recent approach to quantum entanglement. The key idea of the approach consists in presetting of basic observables in the very definition of quantum system. Specification of basic observables defines the dynamic symmetry of the system. Entangled states of the system are then interpreted as states with maximal amount of uncertainty of all basic observables. The approach gives purely physical picture of entanglement. In particular, it separates principle physical properties of entanglement from inessential. Within the model example under consideration, we show relativity of entanglement with respect to dynamic symmetry and argue existence of single-particle entanglement. A number of physical examples are considered.Comment: 12 pages, 2 figure : title has been changed, paper is re-organized, new section "Violation of Bell-type condition by single spin-1" is adde
    corecore