412 research outputs found

    Respuestas vegetativa, productiva y calidad del aceite a la aplicación foliar de P y K a olivos “Arbequinos” y “Picual”

    Get PDF
    A completed hedgerow of cv. Arbequina and a youth vase trained orchard of cv. Picual were fertilized with foliar applications of Phosphorus (P) or Potassium (K) throughout four seasons. The orchards were located near Valdepeñas in the dry area of La Mancha (Spain). Vegetative growth, yield and oil quality were evaluated. Foliar treatments did not increase P or K leaf concentration. Most of the evaluated parameters were not significantly affected by treatments. It was observed that the P treatment increased olive growth and oil yield in both orchards and in certain seasons due to an increment in fruit number. P and K application significantly increased ‘Arbequina’ olive and oil yield in 2008 when spring was wetter than the other years. Oil quality was not modified by fertilizer treatments in the ‘Arbequina’orchard. However, oxidative stability was negatively affected by P and K treatments in ‘Picual’. Oil extraction could be negatively affected by treatments because of the increase in the water content in the fruit obtained from both orchards.Un olivar en seto completamente formado de la variedad Arbequina y otro olivar en vaso joven de la variedad Picual fueron tratados vía foliar con Fósforo (P) y Potasio (K) durante cuatro años. Los olivares estuvieron localizados cerca de Valdepeñas, en la zona árida de La Mancha (España). Se evaluaron el crecimiento vegetativo, el rendimiento y la calidad del aceite. Los tratamientos foliares no aumentaron los niveles foliares de P y K. La mayoría de parámetros de crecimiento y producción evaluados no se vieron afectados por los tratamientos. En ambos olivares y en algún año del ensayo, el tratamiento con P incrementó el crecimiento y el rendimiento, debido al incremento en el número de frutos. Las aplicaciones de P y K aumentaron significativamente el rendimiento en aceituna y aceite en Arbequina en 2008, cuando la primavera fue más húmeda que el resto de años. Los tratamientos no modificaron la calidad del aceite obtenido en ‘Arbequina’. Sin embargo, en ‘Picual’ los tratamientos con P y K afectaron negativamente a la estabilidad oxidativa del aceite. La extracción del aceite podría verse perjudicada por los tratamientos, debido al incremento en el contenido de agua en el fruto obtenido en ambos olivares

    Estudio paleoestomatológico de la población tardorromana de La Muela (Valencia de Don Juan, León)

    Full text link
    X Congreso Nacional de Paleopatología. Univesidad Autónoma de Madrid, septiembre de 200

    Exact propagators for atom-laser interactions

    Get PDF
    A class of exact propagators describing the interaction of an NN-level atom with a set of on-resonance δ\delta-lasers is obtained by means of the Laplace transform method. State-selective mirrors are described in the limit of strong lasers. The ladder, V and Λ\Lambda configurations for a three-level atom are discussed. For the two level case, the transient effects arising as result of the interaction between both a semi-infinite beam and a wavepacket with the on-resonance laser are examined.Comment: 13 pages, 6 figure

    BTZ black hole from (3+1) gravity

    Get PDF
    We propose an approach for constructing spatial slices of (3+1) spacetimes with cosmological constant but without a matter content, which yields (2+1) vacuum with Λ\Lambda solutions. The reduction mechanism from (3+1) to (2+1) gravity is supported on a criterion in which the Weyl tensor components are required to vanish together with a dimensional reduction via an appropriate foliation. By using an adequate reduction mechanism from the Pleba\'nski-Carter[A] solution in (3+1) gravity, the (2+1) BTZ solution can be obtained.Comment: 4 pages, Late

    Las capas de "Margas Verdes" del Cenomanense de la zona central de ka Cadeba Ibérica: su significado en la evolución de la Plataforma Levantina

    Get PDF
    En este sector de la Cordillera Ibérica, dentro del conjunto de los materiales carbonatados litorales y marinos proximales, del Cenomanense inferior-medio, se intercalan hasta cuatro litosomas de «margas verdes  con un espesor variable (5-50 m) y una distribución geográfica no siempre  coincidente. Litológicamente están formadas por margas de un acusado color verde, a veces con intercalaciones de calcarenitas, biomicritas o calizas lumaquélicas, habiéndose considerado como depósitos de llanuras mareales, lagoon o plataformas someras restringidas. Estos materiales se interpretan como depósitos de baja tasa de sedimentación, formados durante intervalos de mínimos eustáticos y depositados a favor de una subsidencia isostática generalizada en esta región pudiéndose obtener a partir de ellos una curva eustática compleja, de traza sinuosa, con cinco valores máximos, que son progresivamentemenos acusados

    Early establishment response of different Pinus nigra ssp. salzmanii seed sources on contrasting environments: Implications for future reforestation programs and assisted population migration

    Full text link
    [EN] Forest restoration constitutes an important issue within adaptive environmental management for climate change at global scale. However, effective implementation of these programs can only be achieved by revising current seed transfer guidelines, as they lack inherent spatial and temporal dynamics associated with climate change. In this sense, provenance trials may provide key information on the relative performance of different populations and/or genotypes under changing ecological conditions. This study addresses a methodological approach to evaluate early plantation performance and the consequent phenotypic plasticity and the pattern of the adaptation of different seed sources in contrasting environments. To this end, six seed sources of Salzmann pine were tested at three contrasting trial sites testing a hypothetical assisted population migration. Adaptation at each site was assessed through Joint Regression and Additive Main effect and Multiplication Interaction (AMMI) models. Most of the observed variation was attributed to the environment (above 90% for all traits), even so genotype and genotype by environment interaction (GxE) were significant. Seedlings out-planted under better site conditions did not differ in survival but in height growth. However, on sites with higher constraints, survival differed among seed sources and diameter growth was high. The adaptation analyses (AMMI) indicated that the cold-continental seed source Soria performed as a generalist seed source, whereas Cordilleras Beticas , the southernmost seed source, was more adapted to harsh environments (frost and drought) in terms of survival. The results supported partially the hypothesis that assisted migration of seed sources makes sense within limited transfer distances, and this was reinforced by the GxE results. The present study could be valuable to address adaptive transfer of seedings in ecological restoration and to determine the suitable seed sources for reforestation programs and assisted population migration under climatic changes. The reported results are based on 3 years' data and need to be considered in this context.This study is a part of the research project: "Application of molecular biology techniques in forest restoration in Mediterranean environments, PAID-05-11" funded by the Universitat Politecnica de Valencia (UPV), program for supporting R&D of new multidisciplinary research lines. The authors are grateful to MeteoCat and Emilio Olid (Meteoclimatic) for the meteorological data and to Jaime Flors and Tragsa for field work and to Dr. Paulo Canas Rodrigues from the Research Center for Mathematics and Applications, Nova University of Lisbon, Portugal, for the deliverance and the guidance of some R codes. The authors also thank the anonymous referees for reviewing the manuscript.Taïbi, K.; Campo García, ADD.; Aguado, A.; Mulet Salort, JM. (2016). Early establishment response of different Pinus nigra ssp. salzmanii seed sources on contrasting environments: Implications for future reforestation programs and assisted population migration. Journal of Environmental Management. 171:184-194. https://doi.org/10.1016/j.jenvman.2016.02.014S18419417

    Decay by tunneling of Bosonic and Fermionic Tonks-Girardeau Gases

    Get PDF
    We study the tunneling dynamics of bosonic and fermionic Tonks-Girardeau gases from a hard wall trap, in which one of the walls is substituted by a delta potential. Using the Fermi-Bose map, the decay of the probability to remain in the trap is studied as a function of both the number of particles and the intensity of the end-cap delta laser. The fermionic gas is shown to be a good candidate to study deviations of the non-exponential decay of the single-particle type, whereas for the bosonic case a novel regime of non-exponential decay appears due to the contributions of different resonances of the trap

    Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions

    Full text link
    Large-scale biogeographical shifts in forest tree distributions are predicted in response to the altered precipitation and temperature regimes associated with climate change. Adaptive forest management to climate change experienced in either stable or rapidly changing environments must consider this fact when carrying out reforestation programs or specifically assisted population migration for conservation purposes. The aim of this study was to compare field performance of eleven seed sources of Aleppo pine outplanted in core and marginal habitats and to assess their phenotypic plasticity for further screening under specific conditions in particular reforestation areas. We hypothesize that current marginal habitat due to low temperature is shifting toward conditions found on the core habitat and that current core habitat will shift toward warmer and drier marginal habitat. Our study reproduced real conditions of reforestation in potential future climatic conditions. Results suggest that it is difficult to predict Aleppo pine provenances' performance in different natural sites from their performance at a single location, even though 'Levante interior' and 'La Mancha' seed sources showed the best overall response among sites. On a site basis, provenances were matched in groups according to their survival and growth responses. Seedlings grown from local seed sources or seed orchards performed better on the core habitat. However, as conditions shifted to marginal habitats, seedlings from climatically similar regions performed better than local sources at least in the short term; our findings suggest that new plantations in areas already affected by global change could be better adapted if they use alternative seed sources.This study is a part of two research projects: "Application of molecular biology techniques in forest restoration in Mediterranean environments, PAID-05-11" funded by the Universitat Politecnica de Valencia (UPV), program for supporting R&D of new multidisciplinary research lines; and the contract subscribed between the UPV and the Ministry of Environment, Rural and Marine affairs (Centro Nacional de Recursos Geneticos Forestales de Alaquas) through its public partnership TRAGSA titled: "Study of seedling quality and field performance of 12 seed sources of Pinus halepensis Mill." The authors are grateful to Amparo Pedros-Mari for field work in La Hunde, to the Valencia Regional Government (CMAAUV, Generalitat Valenciana) and VAERSA staff for their support in allowing the use of the experimental forest of La Hunde. We thank Dr. Kasten Dumroese from USDA Forest Service, Rocky Mountain Research Station for his critical and valuable comments on the draft manuscript. Also, we thank the anonymous referees for their comments, which significantly improved the final manuscript.Taïbi, K.; Campo García, ADD.; Mulet Salort, JM.; Flors, J.; Aguado, A. (2014). Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions. New Forests. 45(5):603-624. https://doi.org/10.1007/s11056-014-9423-yS603624455Agúndez ID, Degen B, von Wuehlisch G, Alia R (1997) Genetic variation of Aleppo pine (Pinus halepensis mill.). For Gen 4(4):201–209Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol App 1:95–111. doi: 10.1111/j.1752-4571.2007.00013.xAlía R, Garcia del Barrio JM, Iglesias S, Mancha JA, de Miguel J, Nicolas JL, Perez F, Sanchez de Ron D (2009) Regiones de procedencia de especies forestales en España. Organismo Autonomo Parques Nacionales, MadridAtzmon N, Moshe Y, Schiller G (2004) Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecol 171:15–22Bariteau M (1992) Variabilité géographique et adaptation aux contraintes du milieu méditerranéen des pins de la section halepensis : résultats (provisoires) d’un essai en plantations comparatives en France. Ann Sci For 49:261–276Benito-Garzón M, Alía R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob Ecol Biogeogr 20:766–778Climent J, Prada MA, Calama R, Chambel MR, Sánchez de Ron D, Alía R (2008) To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). Am J Bot 95(7):833–842Cortina J, Vilagrosa A, Trubat R (2013) The role of nutrients for improving seedling quality in drylands. New For. doi: 10.1007/s11056-013-9379-3Cregg BM, Zhang JW (2001) Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress. For Ecol Manage 154:131–139del Campo AD, Navarro-Cerrillo RM, Hermoso J, Ibáñez AJ (2007a) Relationships between root growth potential and field performance in Aleppo pine. Ann For Sci 64:541–548del Campo AD, Navarro-Cerrillo RM, Hermoso J, Ibáñez AJ (2007b) Relationships between site and stock quality in Pinus halepensis Mill. reforestation on semiarid landscapes in eastern Spain. Ann For Sci 64:719–731del Campo AD, Hermoso J, Flors J, Lidón A, Navarro-Cerrillo RM (2011) Nursery location and potassium enrichment in Aleppo pine stock 2. Performance under real and hydrogel-mediated drought conditions. Forestry 84(3):235–245Esteban GL, Martín JA, de Palacios P, Fernández FG, López R (2010) Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees 24:19–30. doi: 10.1007/s00468-009-0375-3European Forest Institute (2009) A Mediterranean Forest Research Agenda-MFRA. 2010-2020. Mediterranean Regional Office–EFIMED. www.efimed.efi.int/files/attachments/efimed/mediterranean_forest_research_agenda_2010-2020.pdfFAO (2013) State of Mediterranean Forests 2013. www.fao.org/docrep/017/i3226e/i3226e.pdfFerrio JP, Voltas J (2005) Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B 57:164–173Gandullo J, Sánchez-Palomares O (1994) Site ecology of Spanish pines, ICONA, Ministry of Agriculture, fisheries and food, Madrid (in Spanish)Garrido A, Willaarts B, López-Gunn E, Rey D (2012) Considerations on climate variability and change in Spain. In: De Stefano L, Ramón Llamas M (eds) Water, agriculture and the environment in Spain can we square the circle? CRC Press, Boca Raton, pp 191–202Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104Grivet D, Sebastiani F, González-Martínez SC, Vendramin GG (2009) Patterns of polymorphism resulting from long-range colonization in the Mediterranean conifer Aleppo pine. New Phytol 184:1016–1028Hernandez EI, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244IPCC (2001) The Scientific Basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnsson CA (eds) Climate Change 2001. Cambridge University Press, Cambridge, p 881Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481Landis TD, Dumroese RK, Haase DL (2010) The container tree nursery manual: Seedling processing, storage, and outplanting. vol. 7. USDA For. Serv., Agr. Handbook. 674, Washington, p 192Matesanz S, Valladares F (2013) Ecological and evolutionary responses of Mediterranean plants to global change. doi: 10.1016/j.envexpbot.2013.09.004Mayr S (2007) Limits in water relations. Trees at their upper limit. In: Wieser G, Tausz M (eds) Tree life limitation at the Alpine timberline. Springer, Berlin, pp 145–162McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739Metzger MJ, Bunce RGH, Leemans R, Viner D (2008) Projected environmental shifts under climate change: European trends and regional impacts. Environ Conserv 35(1):64–75Mulet JM, Martin DE, Loewith R, Hall MN (2006) Mutual antagonism of target of rapamycin and calcineurin signaling. J Biol Chem 281(44):33000–33007Oliet JA, Puértolas J, Planelles R, Jacobs DF (2013) Nutrient loading of forest tree seedlings to promote stress resistance and field performance: a Mediterranean perspective. New For 44:649–669. doi: 10.1007/s11056-013-9382-8Oliver J, Bogino S, Spiecker H, Bravo F (2012) Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendro 30:35–47Persson B (1994) Effect of provenance transfer on survival in nine experimental series with Pinus sylvestris (L.) in northern Sweden. Scand J Forest Res 9:275–287Potter KM, Hargrove WW (2012) Determining suitable locations for seed transfer under climate change: a global quantitative method. New For 43(5–6):581–599Puértolas J, Gil L, Pardos JA (2005) Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis Mill.) seedlings assessed by chlorophyll fluorescence. Forestry 78(5):501–511Quézel P, Médail F (2003) Ecologie et biogéographie des forêts du basin méditerranéen. Elsevier (Collection Environnement), Paris, 573 pRæbild A, Graudal L, Khan SR (2003) Evaluation of a Prosopis cineraria provenance trial at Dagar Kotli, Pakistan. Trial no. 23 in the arid zone series Results and Documentation No. 28. Danida Forest Seed Centre, Humlebaek, DenmarkRehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin II (2002) Intraspecific responses to climate change in Pinus sylvestris. Glob Change Biol 8:912–929Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11:588–597. doi: 10.1111/j.1461-0248.2008.01172.xSáenz-Romero C, Beaulieu J, Rehfeldt GE (2011) Altitudinal genetic variation among P. patula in growth chambers simulating global warming temperatures. Agrocien 45:399–411Schiller G, Atzmon N (2009) Performance of Aleppo pine (Pinus halepensis) provenances grown at the edge of the Negev desert: a review. J Arid Environ 73:1051–1057Schmidtling RC (1994) Use of provenance tests to predict response to climatic change: loblolly pine and Norway spruce. Tree Physiol 14:805–817Soto A, Robledo-Arnuncio JJ, González-Martínez J, Smouse BE, Alía R (2010) Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view. Mol Ecol 19(7):1396–1409Sultan SE, Spencer HG (2002) Metapopulation structure favors plasticity over local adaptation. Am Nat 160:271–283Tognetti R, Michelozzi M, Giovannelli A (1997) Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provenances. Tree Physiol 17:241–250United Nations, United Nations Economic Commission for Europe & Food and Agriculture Organization of the United Nations (2011) The European Forest Sector Outlook Study II 2010-2030. 107 pp. http://www.fao.org/docrep/016/ap406e/ap406e00.pdfVallejo VR, Smanis A, Chirino E, Fuentes D, Valdecantos A, Vilagrosa A (2012) Perspectives in dryland restoration: approaches for climate change adaptation. New For 43:561–579van Kleunen M, Fischer M (2007) Progress in the detection of costs of phenotypic plasticity in plants. New Phytol 176:727–730Vennetier M, Vilà B, Liang E, Guibal F, Taahbet A, Gadbin-Henry C (2007) Impact of climate change on pines forest productivity and on the shift of a bioclimatic limit in Mediterranean area. In: Leon e V, Lovreglio R (ed) Proceedings of the international workshop MEDPINE 3: conservation, regeneration and restoration of Mediterranean pines and their ecosystems. Bari : CIHEAM, 2007. pp 189–197 (Options Méditerranéennes : Série A. Séminaires Méditerranéen s; n. 75)Villar-Salvador P, Puértolas J, Cuesta B, Peñuelas JL, Uscola M, Heredia-Guerrero N, Rey Benayas JM (2012) Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New For. doi 10.1007/s11056-012-9328-6Voltas J, Chambel MR, Prada MA, Ferrio JP (2008) Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees 22:759–769Williams MI, Dumroese RK (2013) Preparing for climate change: forestry and assisted migration. J For 111(4):287–297Zobel B, Talbert JJ (1984) Applied forest tree improvement. Wiley, New York, pp 75–11

    Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition

    Full text link
    Ramalina farinacea is an epiphytic fruticose lichen that is relatively abundant in areas with Mediterranean, subtropical or temperate climates. Little is known about photobiont diversity in different lichen populations. The present study examines the phycobiont composition of several geographically distant populations of R. farinacea from the Iberian Peninsula, Canary Islands and California as well as the physiological performance of isolated phycobionts. Based on anatomical observations and molecular analyses, the coexistence of two different taxa of Trebouxia (working names, TR1 and TR9) was determined within each thallus of R. farinacea in all of the analysed populations. Examination of the effects of temperature and light on growth and photosynthesis indicated a superior performance of TR9 under relatively high temperatures and irradiances while TR1 thrived at moderate temperature and irradiance. Ramalina farinacea thalli apparently represent a specific and selective form of symbiotic association involving the same two Trebouxia phycobionts. Strict preservation of this pattern of algal coexistence is likely favoured by the different and probably complementary ecophysiological responses of each phycobiont, thus facilitating the proliferation of this lichen in a wide range of habitats and geographic areas. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.This study was funded by the Spanish Ministry of Education and Science (CGL2006-12917-C02-01/02), the Spanish Ministry of Science and Innovation (CGL2009-13429-C02-01/02), the AECID (PCI_A/024755/09) and the Generalitat Valenciana (PROMETEO 174/2008 GVA). We are grateful to Dr J. Gimeno-Romeu (University of California, Davis, USA) and to Dr P. J. G. de Nova (IREC, Ciudad Real, Spain), who were the first to isolate DNA from Ramalina farinacea thalli in our group. Wendy Ran revised the manuscript in English.Casano, L.; Del Campo, E.; García Breijo, FJ.; Reig Armiñana, J.; Gasulla, F.; Del Hoyo, A.; Guéra, A.... (2011). Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition. Environmental Microbiology. 13(3):806-818. https://doi.org/10.1111/j.1462-2920.2010.02386.xS806818133Angert, A. L., Huxman, T. E., Chesson, P., & Venable, D. L. (2009). Functional tradeoffs determine species coexistence via the storage effect. Proceedings of the National Academy of Sciences, 106(28), 11641-11645. doi:10.1073/pnas.0904512106Baker, N. R., & Oxborough, K. (s. f.). Chlorophyll Fluorescence as a Probe of Photosynthetic Productivity. Advances in Photosynthesis and Respiration, 65-82. doi:10.1007/978-1-4020-3218-9_3Barreno , E. Herrera-Campos , M. García-Breijo , F. Gasulla , F. Reig-Armiñana , J. 2008 Non photosynthetic bacteria associated to cortical structures on Ramalina and Usnea thalli from Mexico http://192.104.39.110/archive/IAL6abstracts.pdfBECK, A., FRIEDL, T., & RAMBOLD, G. (1998). Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytologist, 139(4), 709-720. doi:10.1046/j.1469-8137.1998.00231.xBilger, W., & Bj�rkman, O. (1991). Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves ofGossypium hirsutum L. andMalva parviflora L. Planta, 184(2), 226-234. doi:10.1007/bf01102422Bj�rkman, O., & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170(4), 489-504. doi:10.1007/bf00402983Bold, H. C., & Parker, B. C. (1962). Some supplementary attributes in the classification of chlorococcum species. Archiv f�r Mikrobiologie, 42(3), 267-288. doi:10.1007/bf00422045Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20(9), 2380-2380. doi:10.1093/nar/20.9.2380Del Campo, E. M., Casano, L. M., Gasulla, F., & Barreno, E. (2010). Suitability of chloroplast LSU rDNA and its diverse group I introns for species recognition and phylogenetic analyses of lichen-forming Trebouxia algae. Molecular Phylogenetics and Evolution, 54(2), 437-444. doi:10.1016/j.ympev.2009.10.024Demmig-Adams, B., & Adams, W. W. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1(1), 21-26. doi:10.1016/s1360-1385(96)80019-7Demmig-Adams, B., M�guas, C., Adams, W. W., Meyer, A., Kilian, E., & Lange, O. L. (1990). Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta, 180(3), 400-409. doi:10.1007/bf01160396DePriest, P. T. (2004). Early Molecular Investigations of Lichen-Forming Symbionts: 1986–2001. Annual Review of Microbiology, 58(1), 273-301. doi:10.1146/annurev.micro.58.030603.123730DOERING, M., & PIERCEY-NORMORE, M. D. (2009). Genetically divergent algae shape an epiphytic lichen community on Jack Pine in Manitoba. The Lichenologist, 41(1), 69-80. doi:10.1017/s0024282909008111Friedl, T. (1989). Comparative ultrastructure of pyrenoids inTrebouxia (Microthamniales, Chlorophyta). Plant Systematics and Evolution, 164(1-4), 145-159. doi:10.1007/bf00940435Gasulla, F., de Nova, P. G., Esteban-Carrasco, A., Zapata, J. M., Barreno, E., & Guéra, A. (2009). Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta, 231(1), 195-208. doi:10.1007/s00425-009-1019-yGasulla, F., Guéra, A., & Barreno, E. (2010). “A simple and rapid method for isolating lichen photobionts“. Symbiosis, 51(2), 175-179. doi:10.1007/s13199-010-0064-4Gauze, G. F. (1934). The struggle for existence, by G. F. Gause. doi:10.5962/bhl.title.4489Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. doi:10.1016/s0304-4165(89)80016-9Gross, K. (2008). Positive interactions among competitors can produce species-rich communities. Ecology Letters, 11(9), 929-936. doi:10.1111/j.1461-0248.2008.01204.xGUZOW-KRZEMIŃSKA, B. (2006). Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. The Lichenologist, 38(5), 469-476. doi:10.1017/s0024282906005068Haruta, S., Kato, S., Yamamoto, K., & Igarashi, Y. (2009). Intertwined interspecies relationships: approaches to untangle the microbial network. Environmental Microbiology, 11(12), 2963-2969. doi:10.1111/j.1462-2920.2009.01956.xJOHANSEN, S., & HAUGEN, P. (2001). A new nomenclature of group I introns in ribosomal DNA. RNA, 7(7), 935-936. doi:10.1017/s1355838201010500Jones, A. ., Berkelmans, R., van Oppen, M. J. ., Mieog, J. ., & Sinclair, W. (2008). A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences, 275(1641), 1359-1365. doi:10.1098/rspb.2008.0069Kopecky, J., Azarkovich, M., Pfündel, E. E., Shuvalov, V. A., & Heber, U. (2005). Thermal Dissipation of Light Energy is Regulated Differently and by Different Mechanisms in Lichens and Higher Plants. Plant Biology, 7(2), 156-167. doi:10.1055/s-2005-837471Kosugi, M., Arita, M., Shizuma, R., Moriyama, Y., Kashino, Y., Koike, H., & Satoh, K. (2009). Responses to Desiccation Stress in Lichens are Different from Those in Their Photobionts. Plant and Cell Physiology, 50(4), 879-888. doi:10.1093/pcp/pcp043Kranner, I., Cram, W. J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E., & Pfeifhofer, H. W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences, 102(8), 3141-3146. doi:10.1073/pnas.0407716102Kroken, S., & Taylor, J. W. (2000). Phylogenetic Species, Reproductive Mode, and Specificity of the Green AlgaTrebouxiaForming Lichens with the Fungal GenusLetharia. The Bryologist, 103(4), 645-660. doi:10.1639/0007-2745(2000)103[0645:psrmas]2.0.co;2Little, A. F. (2004). Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals. Science, 304(5676), 1492-1494. doi:10.1126/science.1095733Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 1052-1055. doi:10.1038/nature08649Muggia, L., Grube, M., & Tretiach, M. (2008). Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycological Progress, 7(3), 147-160. doi:10.1007/s11557-008-0560-6Niyogi, K. K. (2004). Is PsbS the site of non-photochemical quenching in photosynthesis? Journal of Experimental Botany, 56(411), 375-382. doi:10.1093/jxb/eri056O’Brien, H. E., Miadlikowska, J., & Lutzoni, F. (2005). Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungusPeltigera. European Journal of Phycology, 40(4), 363-378. doi:10.1080/09670260500342647Ohmura, Y., Kawachi, M., Kasai, F., Watanabe, M. M., & Takeshita, S. (2006). Genetic combinations of symbionts in a vegetatively reproducing lichen,Parmotrema tinctorum, based on ITS rDNA sequences. The Bryologist, 109(1), 43-59. doi:10.1639/0007-2745(2006)109[0043:gcosia]2.0.co;2Piercey-Normore, M. D. (2005). The lichen-forming ascomyceteEvernia mesomorphaassociates with multiple genotypes ofTrebouxia jamesii. New Phytologist, 169(2), 331-344. doi:10.1111/j.1469-8137.2005.01576.xPombert, J.-F., Lemieux, C., & Turmel, M. (2006). BMC Biology, 4(1), 3. doi:10.1186/1741-7007-4-3Rambold, G., Friedl, T., & Beck, A. (1998). Photobionts in Lichens: Possible Indicators of Phylogenetic Relationships? The Bryologist, 101(3), 392. doi:10.1639/0007-2745(1998)101[392:pilpio]2.0.co;2Romeike, J., Friedl, T., Helms, G., & Ott, S. (2002). Genetic Diversity of Algal and Fungal Partners in Four Species of Umbilicaria (Lichenized Ascomycetes) Along a Transect of the Antarctic Peninsula. Molecular Biology and Evolution, 19(8), 1209-1217. doi:10.1093/oxfordjournals.molbev.a004181Rosenberg, E., Sharon, G., & Zilber-Rosenberg, I. (2009). The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environmental Microbiology, 11(12), 2959-2962. doi:10.1111/j.1462-2920.2009.01995.xSchreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10(1-2), 51-62. doi:10.1007/bf00024185Skaloud, P., & Peksa, O. (2010). Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution, 54(1), 36-46. doi:10.1016/j.ympev.2009.09.035Wegley, L., Edwards, R., Rodriguez-Brito, B., Liu, H., & Rohwer, F. (2007). Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environmental Microbiology, 9(11), 2707-2719. doi:10.1111/j.1462-2920.2007.01383.xWeis, E., & Berry, J. A. (1987). Quantum efficiency of Photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 894(2), 198-208. doi:10.1016/0005-2728(87)90190-3Wornik, S., & Grube, M. (2009). Joint Dispersal Does Not Imply Maintenance of Partnerships in Lichen Symbioses. Microbial Ecology, 59(1), 150-157. doi:10.1007/s00248-009-9584-yYAHR, R., VILGALYS, R., & DEPRIEST, P. T. (2004). Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology, 13(11), 3367-3378. doi:10.1111/j.1365-294x.2004.02350.xYahr, R., Vilgalys, R., & DePriest, P. T. (2006). Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist, 171(4), 847-860. doi:10.1111/j.1469-8137.2006.01792.xZoller, S. (2003). Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Molecular Phylogenetics and Evolution, 29(3), 629-640. doi:10.1016/s1055-7903(03)00215-
    corecore