647 research outputs found
Two-photon double ionization of neon using an intense attosecond pulse train
We present the first demonstration of two-photon double ionization of neon
using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a
photon energy regime where both direct and sequential mechanisms are allowed.
For an APT generated through high-order harmonic generation (HHG) in argon we
achieve a total pulse energy close to 1 J, a central energy of 35 eV and a
total bandwidth of eV. The APT is focused by broadband optics in a
neon gas target to an intensity of Wcm. By tuning
the photon energy across the threshold for the sequential process the double
ionization signal can be turned on and off, indicating that the two-photon
double ionization predominantly occurs through a sequential process. The
demonstrated performance opens up possibilities for future XUV-XUV pump-probe
experiments with attosecond temporal resolution in a photon energy range where
it is possible to unravel the dynamics behind direct vs. sequential double
ionization and the associated electron correlation effects
Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused x-ray diffraction
Advanced synchrotron radiation focusing down to a size of 300 nm has been
used to visualize nanoscale phase separation in the K0.8Fe1.6Se2
superconducting system using scanning nanofocus single-crystal X-ray
diffraction. The results show an intrinsic phase separation in K0.8Fe1.6Se2
single crystals at T< 520 K, revealing coexistence of i) a magnetic phase
characterized by an expanded lattice with superstructures due to Fe vacancy
ordering and ii) a non-magnetic phase with an in-plane compressed lattice. The
spatial distribution of the two phases at 300 K shows a frustrated or arrested
nature of the phase separation. The space-resolved imaging of the phase
separation permitted us to provide a direct evidence of nanophase domains
smaller than 300 nm and different micrometer-sized regions with percolating
magnetic or nonmagnetic domains forming a multiscale complex network of the two
phases.Comment: 5 pages, 4 figure
Indium selenide: An insight into electronic band structure and surface excitations
We have investigated the electronic response of single crystals of indium selenide by means of angle-resolved photoemission spectroscopy, electron energy loss spectroscopy and density functional theory. The loss spectrum of indium selenide shows the direct free exciton at similar to 1.3 eV and several other peaks, which do not exhibit dispersion with the momentum. The joint analysis of the experimental band structure and the density of states indicates that spectral features in the loss function are strictly related to single-particle transitions. These excitations cannot be considered as fully coherent plasmons and they are damped even in the optical limit, i.e. for small momenta. The comparison of the calculated symmetry-projected density of states with electron energy loss spectra enables the assignment of the spectral features to transitions between specific electronic states. Furthermore, the effects of ambient gases on the band structure and on the loss function have been probed
Transition from damage to fragmentation in collision of solids
We investigate fracture and fragmentation of solids due to impact at low
energies using a two-dimensional dynamical model of granular solids. Simulating
collisions of two solid discs we show that, depending on the initial energy,
the outcome of a collision process can be classified into two states: a damaged
and a fragmented state with a sharp transition in between. We give numerical
evidence that the transition point between the two states behaves as a critical
point, and we discuss the possible mechanism of the transition.Comment: Revtex, 12 figures included. accepted by Phys. Rev.
Direct observation of nanoscale interface phase in the superconducting chalcogenide KFeSe with intrinsic phase separation
We have used scanning micro x-ray diffraction to characterize different
phases in superconducting KFeSe as a function of temperature,
unveiling the thermal evolution across the superconducting transition
temperature (T32 K), phase separation temperature (T520 K)
and iron-vacancy order temperature (T580 K). In addition to the
iron-vacancy ordered tetragonal magnetic phase and orthorhombic metallic
minority filamentary phase, we have found a clear evidence of the interface
phase with tetragonal symmetry. The metallic phase is surrounded by this
interface phase below 300 K, and is embedded in the insulating texture.
The spatial distribution of coexisting phases as a function of temperature
provides a clear evidence of the formation of protected metallic percolative
paths in the majority texture with large magnetic moment, required for the
electronic coherence for the superconductivity. Furthermore, a clear
reorganization of iron-vacancy order around the T and T is found
with the interface phase being mostly associated with a different iron-vacancy
configuration, that may be important for protecting the percolative
superconductivity in KFeSe.Comment: 6 pages, 4 figure
Tracking the phase-transition energy in disassembly of hot nuclei
In efforts to determine phase transitions in the disintegration of highly
excited heavy nuclei, a popular practice is to parametrise the yields of
isotopes as a function of temperature in the form
, where 's are the measured yields
and and are fitted to the yields. Here would be
interpreted as the phase transition temperature. For finite systems such as
those obtained in nuclear collisions, this parametrisation is only approximate
and hence allows for extraction of in more than one way. In this work we
look in detail at how values of differ, depending on methods of
extraction. It should be mentioned that for finite systems, this approximate
parametrisation works not only at the critical point, but also for first order
phase transitions (at least in some models). Thus the approximate fit is no
guarantee that one is seeing a critical phenomenon. A different but more
conventional search for the nuclear phase transition would look for a maximum
in the specific heat as a function of temperature . In this case is
interpreted as the phase transition temperature. Ideally and would
coincide. We invesigate this possibility, both in theory and from the ISiS
data, performing both canonical () and microcanonical ()
calculations. Although more than one value of can be extracted from the
approximate parmetrisation, the work here points to the best value from among
the choices. Several interesting results, seen in theoretical calculations, are
borne out in experiment.Comment: Revtex, 10 pages including 8 figures and 2 table
Blockchain in radiology research and clinical practice: current trends and future directions
Blockchain usage in healthcare, in radiology, in particular, is at its very early infancy. Only a few research applications have been tested, however, blockchain technology is widely known outside healthcare and widely adopted, especially in Finance, since 2009 at least. Learning by history, radiology is a potential ideal scenario to apply this technology. Blockchain could have the potential to increase radiological data value in both clinical and research settings for the patient digital record, radiological reports, privacy control, quantitative image analysis, cybersecurity, radiomics and artificial intelligence. Up-to-date experiences using blockchain in radiology are still limited, but radiologists should be aware of the emergence of this technology and follow its next developments. We present here the potentials of some applications of blockchain in radiology
The superconducting strand for the CMS solenoid conductor
The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. Approximately 2000 km of superconducting strand is under procurement for the conductor of the CMS superconducting solenoid. Each strand length is required to be an integral multiple of 2.75 km. The strand is composed of copper- stabilized multifilamentary Nb-Ti with Nb barrier. Individual strands are identified by distinctive patterns of Nb-Ti filaments selected during stacking of the monofilaments. The statistics of piece length, measurements of I/sub c/, n-value, copper RRR, (Cu+Nb)/Nb-Ti ratio, as well as the results of independent cross checks of these quantities, are presented. A study was performed on the CMS strands to investigate the critical current degradation due to various heat treatments. The degradation versus annealing temperature and duration are reported. (4 refs)
Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles
The mineralization process is crucial to the load-bearing characteristics of the bone extracellular matrix. In this work, we have studied the spatiotemporal dynamics of mineral deposition by human bone marrow mesenchymal stem cells differentiating toward osteoblasts promoted by the presence of exogenous hydroxyapatite nanoparticles. At molecular level, the added nanoparticles positively modulated the expression of bone-specific markers and enhanced calcified matrix deposition during osteogenic differentiation. The nucleation, growth and spatial arrangement of newly deposited hydroxyapatite nanocrystals have been evaluated using Scanning Micro X-Ray Diffraction and Scanning Micro X-Ray Fluorescence. As leading results, we have found the emergence of a complex scenario where the spatial organization and temporal evolution of the process exhibit a heterogeneous and self-organizing dynamics. At the same time the possibility to control the differentiation kinetic through the addition of synthetic nanoparticles, paves the way to empower the generation of more structured bone scaffolds in tissue engineering and to design new drugs in regenerative medicine
Statistical signatures of critical behavior in small systems
The cluster distributions of different systems are examined to search for
signatures of a continuous phase transition. In a system known to possess such
a phase transition, both sensitive and insensitive signatures are present;
while in systems known not to possess such a phase transition, only insensitive
signatures are present. It is shown that nuclear multifragmentation results in
cluster distributions belonging to the former category, suggesting that the
fragments are the result of a continuous phase transition.Comment: 31 pages, two columns with 30 figure
- âŠ