486 research outputs found

    Mechanisms underlying pituitary hypoplasia and failed cell specification in Lhx3-deficient mice

    Get PDF
    AbstractThe LIM homeodomain transcription factor, LHX3, is essential for pituitary development in mouse and man. Lhx3 engineered null mice have profound pituitary hypoplasia that we find is attributable to an increase in cell death early in pituitary development. Dying cells are localized to regions of TPIT expression indicating that cell death may contribute to the severe reduction in differentiated corticotrope cells and lower expression of the corticotrope transcription factors, TPIT and NEUROD1. Lhx3 deficiency also results in dorsal ectopic expression of transcription factors characteristic of gonadotropes, SF1 and ISL1, but no gonadotropin expression. This apparent disturbance of cell differentiation may be due, in part, to loss of NOTCH2. NOTCH2 is normally expressed in the pituitary at the boundary between dorsal, proliferating cells and ventral, differentiating cells and is important for maintaining dorsal–ventral patterning in other organs. Thus, Lhx3 contributes significantly to pituitary development by maintaining normal dorsal–ventral patterning, cell survival, and normal expression of corticotrope-specific transcription factors, which are necessary for repressing ectopic gonadotrope differentiation

    Cronbach’s Alpha Under Insufficient Effort Responding: An Analytic Approach

    Get PDF
    Surveys commonly suffer from insufficient effort responding (IER). If not accounted for, IER can cause biases and lead to false conclusions. In particular, Cronbach’s alpha has been empirically observed to either deflate or inflate due to IER. This paper will elucidate how IER impacts Cronbach’s alpha in a variety of situations. Previous results concerning internal consistency under mixture models are extended to obtain a characterization of Cronbach’s alpha in terms of item validities, average variances, and average covariances. The characterization is then applied to contaminating distributions representing various types of IER. The discussion will provide commentary on previous simulation-based investigations, confirming some previous hypotheses for the common types of IER, but also revealing possibilities from newly considered responding patterns. Specifically, it is possible that the bias can change from negative to positive (and vice versa) as the proportion of contamination increases

    The skeletal phenotype of chondroadherin deficient mice

    Get PDF
    Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their a2b1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the a1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth

    Localization of the thyrotropin-releasing hormone gene, Trh , on mouse Chromosome 6

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47026/1/335_2004_Article_BF00355651.pd

    Genetics of combined pituitary hormone deficiency: Roadmap into the genome era

    Get PDF
    The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. Weexpect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity.Wediscuss approaches for future research in the genetics of CPHD.Fil: Fang, Qing. University of Michigan; Estados UnidosFil: George, Akima S.. University of Michigan; Estados UnidosFil: Brinkmeier, Michelle L.. University of Michigan; Estados UnidosFil: Mortensen, Amanda H.. University of Michigan; Estados UnidosFil: Gergics, Peter. University of Michigan; Estados UnidosFil: Cheung, Leonard Y.M.. University of Michigan; Estados UnidosFil: Daly, Alexandre Z.. University of Michigan; Estados UnidosFil: Ajmal, Adnan. University of Michigan; Estados UnidosFil: Pérez Millán, María Inés. University of Michigan; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Bilge Ozel, A.. University of Michigan; Estados UnidosFil: Kitzman, Jacob. University of Michigan; Estados UnidosFil: Mills, Ryan E.. University of Michigan; Estados UnidosFil: Li, Jun Z.. University of Michigan; Estados UnidosFil: Camper, Sally. University of Michigan; Estados Unido

    The phenotypic spectrum associated with OTX2 mutations in humans

    Get PDF
    OBJECTIVE: The transcription factor OTX2 is implicated in ocular, craniofacial, and pituitary development. DESIGN: We aimed to establish the contribution of OTX2 mutations in congenital hypopituitarism patients with/without eye abnormalities, study functional consequences, and establish OTX2 in the human brain, with a view to investigating the mechanism of action. METHODS: We screened patients from the UK (n=103), international centers (n=24), and Brazil (n=282); 145 were within the septo-optic dysplasia spectrum, and 264 had no eye phenotype. Transactivation ability of OTX2 variants was analysed in murine hypothalamic GT1-7 neurons. In situ hybridization was performed on human embryonic brain sections. Genetically engineered mice were generated with a series of C-terminal OTX2 variants. RESULTS: Two chromosomal deletions and six haploinsufficient mutations were identified in individuals with eye abnormalities; an affected relative of one patient harboured the same mutation without an ocular phenotype. OTX2 truncations led to significant transactivation reduction. A missense variant was identified in another patient without eye abnormalities, however studies revealed it was most likely not causative. In the mouse, truncations proximal to aa219 caused anophthalmia, while distal truncations and the missense variant were tolerated. During human embryogenesis, OTX2 was expressed in the posterior pituitary, retina, ear, thalamus, choroid plexus, and partially in the hypothalamus, but not in the anterior pituitary. CONCLUSIONS: OTX2 mutations are rarely associated with hypopituitarism in isolation without eye abnormalities, and may be variably penetrant, even within the same pedigree. Our data suggest that the endocrine phenotypes in patients with OTX2 mutations are of hypothalamic origin

    Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans

    Get PDF
    Germline mutations in BRAF and other components of the MAPK pathway are associated with the congenital syndromes collectively known as RASopathies. Here, we report the association of Septo-Optic Dysplasia (SOD) including hypopituitarism and Cardio-Facio-Cutaneous (CFC) syndrome in patients harbouring mutations in BRAF. Phosphoproteomic analyses demonstrate that these genetic variants are gain-of-function mutations leading to activation of the MAPK pathway. Activation of the MAPK pathway by conditional expression of the BrafV600E/+ allele, or the knock-in BrafQ241R/+ allele (corresponding to the most frequent human CFC-causing mutation, BRAF p.Q257R), leads to abnormal cell lineage determination and terminal differentiation of hormone-producing cells, causing hypopituitarism. Expression of the BrafV600E/+ allele in embryonic pituitary progenitors leads to an increased expression of cell cycle inhibitors, cell growth arrest and apoptosis, but not tumour formation. Our findings show a critical role of BRAF in hypothalamo-pituitary-axis development both in mouse and human and implicate mutations found in RASopathies as a cause of endocrine deficiencies in humans
    • …
    corecore