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The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of
syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease
progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput
sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diag-
nosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing.
In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may
facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic
reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to
reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known
genes. In recent years, there have been great improvements in databases of genetic information for diverse pop-
ulations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent
genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling
and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting
pathogenicity. We discuss approaches for future research in the genetics of CPHD. (Endocrine Reviews 37: 636–675,
2016)
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I. Introduction

A. Definition, clinical features, and genetic complexity
of CPHD

Combined pituitary hormone deficiency (CPHD) (also
called panhypopituitarism) is a condition classically

characterized by a shortage of GH and at least one other
pituitary hormone. If GH is the only deficient hormone, a
diagnosis of isolated GH deficiency (IGHD) is made.
About 45% of IGHD cases evolve to CPHD after a
median follow-up time of 5.4 years (1), and CPHD is more
likely to develop in patients with more severe idiopathic
IGHD (2). The prevalence of CPHD is estimated to be 1 in
8000 individuals worldwide (Genetics Home Reference at
NIH, https://www.ghr.nlm.nih.gov). Clinically, CPHD is
often discovered when children exhibit reduced growth
velocity, although hormone deficiency at birth can cause
hypoglycemia and sudden death, emphasizing the neces-
sity for early detection and treatment (3, 4). The clinical
workup for growth insufficiency includes measurement of
sitting and standing height, circulating hormone levels,
hormone secretion in response to stimulation, imaging of
the brain and pituitary gland, and determination of bone
age with hand x-rays (3, 5, 6). Imaging sometimes reveals
a pituitary mass, and genetic testing can often predict
whether the mass is likely benign, thus avoiding unneces-
sary surgery (7, 8). Family history is also important be-
cause mean parental height is used to calculate the child’s
target height. If there is no family history of growth in-
sufficiency, the case is termed sporadic, and it could be
genetic or environmental (see Genetic Terminology, Box
1). In familial cases involving multiple affected individu-
als, the likelihood is increased that the cause is genetic,
although environmental factors could play a role in the
expressivity or severity of the features.

CPHD is caused by both genetic and nongenetic factors
including trauma, brain surgery, tumor, infection, chronic
heavy metal poisoning, irradiation, and autoimmune dis-
eases (9–15). Genetic defects causing CPHD typically re-
sult in insufficient anterior pituitary gland development
and hormone secretion manifesting in early childhood.
Mutations in genes expressed in the developing head, hy-
pothalamus, and/or pituitary cause CPHD. The earliest
acting genes in head development are often associated
with craniofacial abnormalities in addition to pituitary
dysfunction (syndromic CPHD), whereas genes expressed
in the hypothalamus or intrinsic to the pituitary cause
nonsyndromic CPHD. The genetic complexity of CPHD
can be explained by the heterogeneity of underlying fac-
tors, which contributes in part to the broad phenotypic
spectrum. To date, 30 genes have been reported to be in-
volved in the pathogenesis of CPHD (Figure 1). GLI2,

HESX1, LHX3, LHX4, OTX2, POU1F1, PROP1, and
SOX2 are the most studied ones (16–21).

Precise clinical phenotypic characterization of patients
is a very important foundation for genetic studies. It is
important to document the nature and progression of hor-
mone deficiencies, take note of associated features, and
eliminate cases that have a likely environmental etiology.
Grouping of patients based on clinical phenotype can also
help in identifying causal genes, which was done success-
fully with other endocrine disorders such as hypogonado-
tropic hypogonadism (HH), Kallmann syndrome (KS),
and IGHD (22–25). As we learn more about the genetic
etiology of CPHD, the data suggest that it is part of a
spectrum disorder, with holoprosencephaly (HPE) and
septo-optic dysplasia (SOD) at the severe end and HH and
IGHD at the mild end of the spectrum (Table 1). The
overlap derives from common developmental programs.
For example, the eye, ear, nose, pituitary gland, and some
cranial nerve ganglia are all derived from placodes in the
developing head, and developmental regulation involves
common genetic pathways (26). SOD features underde-
veloped optic nerves, dysfunctional pituitary, and brain
malformations. It results from altered craniofacial devel-
opment in the midline and can be caused by mutations in
HESX1, OTX2, SOX2, SOX3, and PAX6 (26, 27). Other
examples of CPHD with craniofacial involvement are pa-
tients with HPE, which occurs when the forebrain of the
embryo fails to separate into two cerebral hemispheres
with or without other craniofacial midline structural
anomalies or eye defects. Genes in the sonic hedgehog
(SHH) signaling pathway can cause both HPE and CPHD
(28, 29).

HH and CPHD have overlapping genetic etiologies.
HH is characterized by gonadotropin insufficiency, re-
duced sex steroid production, and delayed puberty or in-
fertility (30). It can be caused by reduced production of
GnRH due to failed migration of GnRH neurons during
development, as well as impaired regulation of GnRH se-
cretion. Mutations in many genes can cause HH, and some
of these genes are also implicated in CPHD (CHD7,
PROKR2, WDR11, FGFR1, and FGF8) (30–33) (Figure
1 and Table 1). In addition to X-linked or autosomal re-
cessive Mendelian cases of HH, panel sequencing of
known genes in large cohorts of patients provided evi-
dence that individuals with HH sometimes carry delete-
rious alleles within multiple HH genes (30). CPHD may
prove to be a multifactorial disease as well because iden-
tical mutations can produce a spectrum of phenotypic se-
verity in different CPHD patients, and incomplete pen-
etrance is not uncommon in family pedigrees. This
suggests the involvement of multiple genes and/or envi-
ronment in enhancing or suppressing the severity of the
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features. Studies in mutant
mice clearly document the
effects of genetic and envi-
ronmental factors, including
maternal alcohol consump-
tion on craniofacial develop-
ment, and the fact that ge-
netic lesions that are
normally tolerated can sen-
sitize the fetus to environ-
mental challenges (34–36).

Height is a highly herita-
ble trait, and it is estimated
that genetic factors explain
80–90% of the variation
(37). Numerous genome-
wide association studies
(GWAS) have been carried
out on large population
groups in an effort to identify
the genetic factors that con-
tribute to height (38–40).
The loci identified to date ex-
plain about 30% of the her-
itability. Interestingly, a few
genes implicated by GWAS
are mutated in cases of GH
insufficiency or resistance,
including GLI2, GH1,
GHR, and HHIP. In addi-
tion, association was found
with HESX1 and POU1F1
in a pygmy population (41).
Loci involved in skeletal dys-
plasia or intrauterine growth
retardation are also impli-
cated in height determina-
tion (42). Some of the miss-
ing heritability could be
attributable to gene-gene
interactions and epigenetic
effects (43). For example, it
is known that nutrition af-
fects growth, and nutri-
tional effects can be inher-
ited trans generationally
through incomplete erasure
of epigenetic marks (44). It is
notable that variation near
the DNA methyltransferase
gene, DNMT3A, is associ-
ated with height, and there

Box 1. Genetic Terminology
Inheritance patterns

Sporadic: No family history
Familial: Multiple related individuals are affected.
Autosomal: Chromosomes other than the sex chromosomes X and Y
X-linked: The disorder is due to lesion on the X chromosome; typically boys are affected,

receiving the mutant allele from an unaffected mother.
Recessive: Affected individuals have a lesion in both alleles.
Dominant: Affected individuals have a lesion in only one allele.

Effects of mutations
LOF: Loss-of-function mutations result in lack of a gene product or an inactive one. Often

recessive (see exception below).
Dominant haploinsufficient: Loss of function of one allele is sufficient to cause the phenotype.
Dominant negative: Mutant protein interferes with the function of the normal protein produced

by the unaffected allele.
GOF: Gain-of-function mutations cause over expression, mis-expression or excess function.

Often dominant.
Mutations

Missense: Nucleotide change results in an amino acid substitution.
Nonsense: Nucleotide change causes a premature stop codon.
Indel: Insertion or deletion of nucleotides.
Frame shift: An indel that changes the reading frame of the protein.
CNV: Copy number variants are gene duplications or deletions that result in overdosage or

underdosage of genes, respectively.
Splicing: Nucleotide changes that render the donor or acceptor sequences ineffective for splicing are

commonly identified in exome sequencing, but changes within introns can create novel splice sites
that disrupt gene function, and these are often missed.

De novo mutation: The affected individual has a lesion that is not detected in either parent (see
mosaicism below).

Splice enhancer: DNA sequence motif that directs or improves splice site utilization. Mutations
in exonic splice enhancers may not change the encoded amino acid but may still be deleterious
because of the failure to utilize the appropriate splice site.

Phenotypic variability and penetrance
Variable expressivity: Different individuals with the same genetic lesion can exhibit a range of

symptoms from mild to severe.
Incomplete penetrance: Not all individuals with the genetic lesion exhibit a clinical

phenotype. Contrasts with fully penetrant, which means every individual with the lesion
will be affected to some degree.

Gonadal mosaicism: If a mutation occurs after fertilization, the individual may have germ cells that
are normal as well as ones that carry the mutation. The mutation may or may not be detected in
somatic tissue such as peripheral blood, which is often used to track mutations in a pedigree. If
gonadal mosaicism is present but not detected, the mutation may be erroneously thought to be de
novo, but there is a risk for additional affected children.

Miscellaneous
SNP: Single nucleotide polymorphism.
Digenic disorder: Two different mutated genes are required to cause the clinical phenotype.
Double heterozygote: An individual who is heterozygous for variants in two different genes.
Compound heterozygote: An individual with a different variant in each allele of the same gene.
Hemizygote: An individual with only one copy of the gene either because the other copy is deleted

or the gene is on the X-chromosome and the individual is male.
Genetic heterogeneity: A disorder that can be caused by mutations in a variety of different genes.

Conventions are to indicate a mutation in the predicted protein (p.) with the normal or reference
amino acid, the position of the change, and the alteration. Asterisk indicates a nonsense codon
ie. p.W194*. For cDNA (c.), the nucleotide position is followed by the reference and change,
ie, c.334C>Tindicates a C to T change. Ins and del indicate insertions and deletions,
respectively.
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Figure 1.

Figure 1. Genetics of CPHD: timeline for discovery, cases explained, and developmental expression. A, Mouse pituitary development. Tissue fated
to become Rathke’s pouch is located at the anterior portion of the embryo. It is in constant contact with the neural ectoderm, which becomes the
infundibulum. At e9.5, the oral ectoderm begins to invaginate to produce Rathke’s pouch (horizontal hatching). At e12, the cartilage (black)
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are several well-known syndromes that are imprinted and
affect height (45). Epigenetic heredity is a determinant of
adult height, but more research is needed to identify the
specific contributions of epigenetic factors.

Most patients with CPHD (�84%) have no genetic
diagnosis (Figure 1) (46–69). Gene identification methods
for human diseases have evolved from positional cloning
of single genes and Sanger sequencing to massively parallel
sequencing. With reduced costs and increased application
of next-generation sequencing (NGS) techniques, we ex-
pect that more novel genes and variants will be discovered.
However, the assignment of pathogenicity and causality of
genes and variants is not trivial, and there has not yet been a
systematic reviewof this topic forCPHD.Thepurposeof this
review is to document the inheritance mechanisms and
pathogenicity of genes implicated in CPHD and its related
diseases, to apply current criteria for classifying pathogenic
variants, and to facilitate future novel gene discovery in
CPHD. Other recent reviews have provided other perspec-
tives on IGHD and CPHD (21, 25, 70–73).

B. Retrospective on gene discovery for CPHD in early
years

There has been rapid progress in identifying genes that
cause CPHD since 1992, and now a total of 30 genes are
implicated, although the amount of evidence for individ-
ual genes is variable (Figure 1 and Table 2). We review the
early discovery process here.

1. Spontaneous mouse mutant strains reveal CPHD candi-
date genes

The first genes identified in CPHD patients were found
after studies in mice implicated the genes in pituitary de-
velopment and function. A spontaneous mutation causing
dwarfism, infertility, and lethargy was reported in 1929.
These mice, known as Snell dwarfs, were used to demon-
strate that the pituitary gland regulates growth and the
function of multiple target organs (74, 75). The molecular
basis for the disorder was unknown until 1990 (76, 77).
The pituitary transcription factor POU1F1 (previously
known as PIT-1 and GHF-1) was discovered based on its
ability to transactivate the GH and prolactin (PRL) genes
(78, 79) and was tested as a candidate gene for the muta-
tion. A recessive loss-of-function mutation in Pou1f1
(p.W251C) was shown to be responsible for the GH, PRL,
and TSH deficiency in these mutants. Two years later, a
homozygous nonsense mutation in POU1F1 gene was
identified in a CPHD patient from consanguineous par-
ents (80), which was the first report in humans of a defect
in a transcription factor causing CPHD.

Similarly, the Ames dwarf mutation arose spontane-
ously in 1961, and in 1996 genetic mapping and positional
cloning experiments demonstrated that these mice have
panhypopituitarism caused by a p.S83P substitution in the
paired-like homeodomain transcription factor, termed
Prophet of Pit-1 (Prop1) (81–83). Two years later, four
CPHD families with homozygosity or compound
heterozygosity for inactivating mutations of PROP1 were
identified (84).

The Ames and Snell dwarf mice are reasonable pheno-
copies of the human patients, although there are some
differences. In humans, a differentiating diagnosis be-
tween PROP1 and POU1F1 patients can be the presence
or absence of gonadotropin deficiency, respectively, in ad-
dition to low GH, TSH, and PRL (85). Both Prop1- and
Pou1f1-deficient mice lack GH, TSH, and PRL, and both
have low gonadotropins. However, supplementation with
GH and T4 is sufficient to restore fertility in both mutants
(86, 87). Mice require thyroid hormone to develop the
feedback loops that regulate gonadotropin function (88).
Patients with PROP1 mutations show progressive hor-
mone deficiency that can eventually result in the life-
threatening loss of ACTH, but adrenal function is preserved
in Prop1 mutant mice (89). However, it is important to note
that mice homozygous for loss-of-function mutations in ei-
ther Prop1 or Pou1f1 can manifest quite different symptoms
on different genetic backgrounds, ranging from newborn le-
thality to a vigorous long life, even when environmental pa-
rameters like food intake and endemic diseases are invariant
(90, 91). This demonstrates that the effects of both PROP1
and POU1F1 deficiency are enhanced or suppressed by ge-

Figure 1. (Continued). begins to form, and Rathke’s pouch pinches
off. The posterior lobe (vertical hatching) is formed from evagination of
neural ectoderm, and it produces FGF, which stimulates the growth of
the pouch. The anterior and intermediate lobes are derived from
Rathke’s pouch and contain the major hormone-producing cell types
by birth. The corresponding time in human development is weeks 4–9
(Carnegie stages 8–22) (418). Orientation: sagittal section with rostral
to the left and dorsal at the top. I, infundibulum; H, heart; N,
notochord; OM, oral membrane; PP, prechordal plate; F, forebrain;
MB, midbrain; HB, hindbrain; AN, anterior neural pore; RP, Rathke’s
pouch; O, oral cavity; PL, posterior lobe; P, pontine flexure; OC, optic
chiasma; IL, intermediate lobe; AL, anterior lobe; DI, diencephalon; PO,
pons; SC, sphenoid cartilage. [Redrawn from H. Z. Sheng and H.
Westphal: Early steps in pituitary organogenesis. Trends Genet. 1999;
15(6):236–240 (166), with permission. © Elsevier.] B, The timeline of
gene discovery for CPHD. The light gray bars represent the total
number of genes identified by the candidate screening methods; the
dark gray bars represent the total number of genes identified by
the WES. For each year, the identified gene names are at the top of
the bar. *, Gene identified by WES. C, Pie chart indicating the familial
and sporadic cases of CPHD that were explained by mutations in the
genes PROP1, POU1F1, LHX3, LHX4, and HESX1. Data are summarized
from an extensive literature survey, which illustrates the variation in
frequency of PROP1 mutations by ethnic groups (46). Because
systematic screening has not yet been done for the other CPHD genes,
it is not possible to estimate their frequency, but it is expected to be
quite small.
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netic variation inherent among inbred mouse strains. The
mouse models provide excellent tools to identify such inter-
acting genes (92, 93).

2. Genetically engineered mouse models identify CPHD
candidate genes

The LIM homeodomain gene Lhx3 (p-Lim or Lim3) is
expressed in the developing pituitary gland. In 1996, the
Lhx3�/� mutant mice were generated by homologous re-

combination in embryonic stem cells and were discovered
to lack both the anterior and intermediate lobes of the
pituitary gland (94). The pituitary primordium, Rathke’s
pouch (Figure 1), formed in the mutants but it failed to
grow, and only Pomc-expressing cells were detected. Four
years later, the human gene was cloned and characterized,
and a homozygous LHX3 defect was identified in patients
with CPHD and rigid cervical spine with limited head ro-
tation (95, 96).

Table 1. Genes Implicated in Cases of CPHD Can Present With Other Clinical Phenotypes

Gene

Phenotypesa

Craniofacialb Pituitaryc Peripheral Tissuesd

ARNT2 Brain, eye CPHD Kidney, urinary tract
BMP4 Eye, craniofacial, cleft lip, palate, spina bifida

aperta
CPHD Renal hypodysplasia,

hypospadias,
polydactyly

CDON HPE (CPHD) None
CHD7 Eye, craniofacial CPHD None
FGF8 SOD, KS: anosmia HHe CPHD IGHD Vacterl, hypospadia
FGFR1 Pfeiffer, Hartsfield, Jackson-Weiss syndromes CPHD None
GLI2 HPE, cleft lip, palate HH CPHD IGHD Polydactyly,

cryptorchidism
GLI3 Pallister Hall syndrome, hypothalamic

hamartoma, Greig cephalopolysyndactyly
CPHD IGHD Skeletal, polydactyly

GPR161 None (CPHD) (IGHD) None
HESX1 SOD CPHD IGHD None
HHIP HPE (CPHD) None
HNRNPU Lennox-Gastaut syndrome, CNS, epilepsy,

intellectual disability
(CPHD) None

IGSF1 None CPHD, TSH only Macro-orchidism
LHX3 Hearing CPHD Skeletal
LHX4 None CPHD None
OTX2 Eye, craniofacial CPHD IGHD None
PAX6 Eye CPHD None
PNPLA6 Spastic paraplegia, Leber congenital

amaurosis and other syndromes, eye,
craniofacial

HH CPHD Muscle wasting

POLR3A Hypomyelination, hypodontia HH (IGHD) None
POU1F1 None CPHD IGHD None
PROKR2 KS: anosmia HH (CPHD) (IGHD) Hirschsprung disease
PROP1 None CPHD None
RBM28 Alopecia, neurological defects, intellectual

disability, tooth defects
(CPHD) None

SHH HPE, eye, dental anomalies (CPHD) None
SOX2 Eye, dental anomalies, hearing impairment HH CPHD Micropenis
SOX3 Intellectual disability, abnormal facial features,

speech difficulties, retrognathia, hearing
impairment

HH CPHD IGHD Sex reversal, digital
anomalies,
micropenis

TCF7L1 SOD CPHD None
TGIF1 HPE CPHD None
WDR11 Cleft palate, hearing, brain and dental

abnormalities, KS: anosmia
HH (CPHD) None

ZSWIM6 Acromelic frontonasal dysostosis, brain CPHD Skeletal,
cryptorchidism

a Phenotypes listed represent the range of symptoms reported in various individuals. The pituitary hormone deficiency and associated craniofacial and peripheral tissue
phenotypes can vary and/or be absent.
b Craniofacial refers to all aspects of head development except the pituitary, which is listed separately.
c The parentheses indicate need for additional evidence or patient examples to add certainty to the role of the gene with the indicated pituitary phenotype.
d Peripheral tissue phenotypes are listed, except for those that are secondary to the pituitary hormone deficiencies.
e The HH can be of hypothalamic or pituitary origin. Cases were arbitrarily assigned to the pituitary category for simplicity.
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Lhx4 is expressed in the pituitary primordium (Rath-
ke’s pouch) and persists in the anterior and intermediate
lobes through adulthood (97). In 1997, genetically engi-
neered Lhx4�/� mice were generated. They initially form
Rathke’s pouch normally, but very few cells undergo dif-
ferentiation into the five anterior pituitary-specific cell lin-
eages (97). The human LHX4 was cloned, and a germline
splice-site mutation in LHX4 was found in a patient with
CPHD and a small sella turcica in 2001 (98).

Hesx1 is expressed in embryonic stem cells and be-
comes restricted to the developing forebrain, hypothala-
mus, and Rathke’s pouch (99). In 1998, mice homozygous
for a Hesx1 disruption were generated and found to ex-
hibit variable anterior central nervous system (CNS) de-
fects and pituitary dysmorphology (100). Afterward, pa-
tients with SOD and/or CPHD were screened for HESX1
mutations, and siblings homozygous for a p.R160C sub-
stitution were identified (100).

3. Genes that cause severe craniofacial defects are associ-
ated with syndromic CPHD

The midline location of the pituitary gland and its close
developmental association with the forebrain result in the

association of CPHD with HPE. HPE can be caused by
mutations in SHH, GLI2, PTCH1, TGIF, SIX3, ZIC2,
NODAL, FOXH1, CDON, FGF8, and DISP1 (101–
103). The SHH signaling pathway, which activates target
genes under the control of the GLI family transcription
factors, is the best studied cause of HPE. GLI2 mutations
were first identified in a genetic screen of 390 HPE patients
(104). Three of the four index families carrying GLI2
heterozygous mutations had hypopituitarism. Constitu-
tive Gli2 knockout mice die embryonically. Conditional
deletion of Gli2 in Rathke’s pouch demonstrated that Gli2
is required for normal GH, PRL, and ACTH production
(105). Shh and Gli2 signaling also control the diencephalic
expression of Bmp4 and Fgf8, which are necessary for
stimulating anterior pituitary development (106). Muta-
tions in these genes were later identified in patients with
hypopituitarism (see section III.B).

4. CPHD genes revealed through detection of
cytogenetic abnormalities

The involvement of SOX3 gene with X-linked panhy-
popituitarism was discovered in 2002 through cytogenetic

Table 2. CPHD Genes Evaluated and Classified for the Causality

Gene
Name

Evidence 1: Multiple
Unrelated Patients

Evidence 2:
Functional Studies

Evidence 3: Gene
Expression

Evidence 4: Interactions
and Pathways

Total Supporting
Evidence

POU1F1 � � � First gene discovered 4
PROP1 � � � � 4
HESX1 � � � � 4
LHX3 � � � � 4
LHX4 � � � � 4
OTX2 � � � � 4
GLI2 � � � � 4
SOX2 � � � � 4
SOX3 � � � � 4
FGF8 � � � � 4
FGFR1 � � � � 4
GLI3 � � � � 4
PAX6 � � � � 4

ARNT2 � � � 3
BMP4 � � � 3
IGSF1 � � � 3
PNPLA6 � � � 3
SHH � � � 3
TCF7L1 � � � 3
ZSWIM6 � � � 3

CHD7 � � 2
PROKR2 � � 2
TGIF1 � � 2

CDON � 1
GPR161 � 1
HHIP � 1
HNRNPU � 1
POLR3A � 1
RBM28 � 1
WDR11 � 1

Separation of groups of genes by line space indicate the groups of genes that are supported as CPHD candidates by different numbers of evidence.
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testing and subsequent mutation analysis in a patient with
mental retardation and IGHD (107). The patient had an
in-frame duplication of 33 bp that expanded a polyalanine
tract by 11 alanines. Later, in 2004, Sox3 was studied in
mice. Sox3 is highly expressed in ventral diencephalon,
and targeted disruption of Sox3 leads to abnormal devel-
opment of Rathke’s pouch (108).

5. Genes identified through functional relationships with
other CPHD genes

Heterozygous OTX2 mutations were identified in pa-
tients with anophthalmia and microphthalmia in 2005
using a candidate gene screening approach (109, 110).
Mouse studies showed that Otx2 is required for activation
of Hesx1 expression in the developing forebrain (111),
and HESX1 mutations can cause eye and/or pituitary de-
fects (100). Additionally, an OTX2 binding site was iden-
tified in the promoter of the Hesx1 gene (112). The con-
nection between OTX2 and HESX1 led to screening and
identification of OTX2 mutations in CPHD families with
or without ocular abnormalities. A heterozygous frame-
shift mutation in OTX2 was identified in a patient with
anophthalmia, short stature, and GH deficiency, and a
missense mutation was found in two unrelated children
with CPHD who presented with neonatal hypoglycemia
and deficiencies of GH, TSH, LH, FSH, and ACTH (53,
113). As early as 1995, however, mouse fetuses heterozy-
gous for a genetically engineered Otx2 knockout were
discovered to have a highly variable phenotypic spectrum
that is dependent upon the genetic background (35, 114).
The phenotypes included pituitary aplasia, ocular malfor-
mations, facial clefting, and acephaly. Homozygotes had
early embryonic lethality. The mechanism whereby Otx2
haploinsufficiency causes hypopituitarism was revealed
by specifically deleting Otx2 in the neural ectoderm that
gives rise to the ventral hypothalamus and posterior pitu-
itary lobe. The hypoplasia of these regions led to reduced
bone morphogenetic protein and fibroblast growth factor
(FGF) signaling and, secondarily, reduced growth of the
anterior lobe (115). Deletion in the anterior lobe had no
consequences.

6. Summary
Early successes in identification of CPHD genes relied

on phenotypic similarities between mouse models and hu-
man patients, the underlying knowledge of genetic path-
ways that regulate pituitary development, the occasional
association of CPHD with genetic lesions that cause
craniofacial anomalies, and cytogenetic findings. The
emerging new paradigm is to conduct an unbiased search
for new CPHD genes using NGS and utilize cell lines and
animal models to demonstrate the functional relevance of

the genetic changes and understand the mechanism of ac-
tion of the novel genes. Criteria are being established to
ensure the authentic pathogenicity and causality of genetic
variation, and we will apply the current guidelines to genes
and variants implicated in CPHD (116, 117).

C. Criteria for identifying pathogenic genes and variants
for CPHD

To date, most human CPHD genes were identified by
Sanger sequencing of individual candidate genes, which is
not an efficient approach for diseases with a great deal of
genetic heterogeneity (118). Moreover, gene-by-gene
screening is unlikely to identify digenic or multigenic dis-
ease unless all known genes are investigated in each pa-
tient. Whole exome sequencing (WES), currently the most
commonly used massively parallel sequencing technique,
examines the exons of all known protein-coding genes
simultaneously and offers a powerful approach to rapidly
screen for candidate disease-causing mutations, with a
current diagnosis rate of 25% (119). The sequencing tech-
nique and data analysis pipeline of WES are not the focus
of this review and have been comprehensively discussed
elsewhere (120–122). The first case of a CPHD causative
gene identified by WES was ARNT2 (123). Since then, five
other genes were implicated in CPHD by WES (Figure 1).
We expect that application of WES and whole genome
sequencing (WGS) will continue to increase our under-
standing of this disorder and provide valuable informa-
tion about oligogenic disease.

The high rate of acquiring data by high throughput
sequencing and the ambiguity in interpretation has
prompted important dialog among genetic researchers
and medical geneticists about assigning pathogenicity to
genuine disease-causing genetic variants. In 2014, a group
of 27 experts in genetic research, analysis, and clinical
diagnostic sequencing published guidelines for investigat-
ing causality of sequence variants in human diseases (117).
The challenges in assessing sequence variants in human
disease are discussed in the guidelines, and a list of factors
to consider at both the gene level and the variant level is
provided for presumed monogenic diseases. One year
later, the American College of Medical Genetics and
Genomics (ACMG) and the Association for Molecular
Pathology (AMP) updated their standards and guidelines
for the interpretation of sequence variants (116). With
awareness of the increased complexity in sequence inter-
pretation during clinical genetic testing, the ACMG-AMP
guidelines provided a stringent and semiquantitative set of
criteria for variant classification. A recent pilot evaluation
of the performance of ACMG-AMP guidelines on 99 vari-
ants among nine laboratories showed that consensus dis-
cussion and detailed review among the researchers greatly
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improved the concordance of variant classifications (124).
More effort is needed to increase application of a stan-
dardized approach for variant assessment and to achieve
consistent concordance with variant interpretations. To
date, there has not been a systematic overview in the lit-
erature of the pathogenicity of all the genes and variants
that have already been reported to cause CPHD. It is
timely and important to conduct such a survey before the
field fully embraces the novel sequencing technologies for
new gene identification in CPHD.

II. Classification and Review of CPHD
Causative Genes and Variants

We present our methods for identifying genes implicated
in CPHD and evaluating the pathogenicity using the cur-
rently accepted guidelines for genetic variation.

A. Gene-level assessment to confirm CPHD causative
genes

Combining the search results from free (Online Men-
delian Inheritance in Man [OMIM] and PubMed)
and subscription (Human Gene Mutation Database
[HGMD]) databases, we identified 30 genes that are as-
sociated with either nonsyndromic or syndromic CPHD in
the literature by June 30, 2016. We applied the four cat-
egories of evidence suggested by MacArthur et al (117) to
assess the causality of these genes for CPHD (Table 2).
These lines of evidence include: 1) variants in the same
gene and similar clinical phenotypes have been observed in
multiple unrelated individuals; 2) functional studies, in-
cluding biochemistry, cell culture, and/or animal models
confirm the deleterious effects of detected variants in the
genes; 3) the protein that the gene encodes is expressed in the
appropriate developing tissue such as hypothalamus and/or
pituitary, according to BioGPS (www.biogps.org), Gene Ex-
pression Database (GXD; http://www.informatics.jax.org/
expression.shtml), and/or the internally maintained Embry-
onic Mouse Pituitary cDNA library (125) (https://sites.
google.com/a/umich.edu/riken-database-2014/); and 4) the
gene product interacts with other proteins or plays a role in
the biological pathways that are implicated in the disease.
Replication in unrelated individuals and functional studies
are the most important types of evidence. We consider the
genes that have at least two types of evidence, to date, that
support their candidacy as causative genes for CPHD. These
includethefrequentlyscreenedandhistoricallymostrelevant
genes (POU1F1, PROP1, HESX1, LHX3, LHX4, SOX3,
GLI2, SOX2, and OTX2) and the genes that are recently
identified or less commonly reported in CPHD (BMP4,
FGF8, FGFR1, GLI3, PAX6, IGSF1, SHH, ARNT2,

TCF7L1, CHD7, PROKR2, TGIF1, PNPLA6, and
ZSWIM6). Also, seven genes, CDON, GPR161, RBM28,
POLR3A, HHIP, WDR11, and HNRNPU, are grouped
together awaiting additional evidence to confirm causal-
ity. Among these, CDON, GPR161, and HNRNPU were
discovered by WES, and the other four genes, RBM28,
POLR3A, HHIP, WDR11, were from candidate gene
screening.

B. Adapted workflow for variant-level classification of
reported variants in CPHD patients

There are about 2,500 reported variants in the 30
CPHD-associated genes. For each variant, the classifica-
tion criteria that we used are based on the ACMG-AMP
guidelines, which is so far the most detailed and quanti-
tative system for variant interpretation in genetic testing
(116). Our retrospective review of variants implicated as
causing CPHD focuses on specific criteria including minor
allele frequency (MAF), which we expect to be rare in the
case of a rare disease, computational prediction of a del-
eterious effect on function, and confirmation of reduced
activity with functional assays. At the gene level, we
weighed gene expression in the relevant tissues, gene func-
tion in pertinent biology pathways, variants in multiple
families with similar phenotypes, and cosegregation of the
clinical phenotype with the variant in a pedigree. We ap-
plied the weight and the rules for combining criteria in the
ACMG-AMP guidelines to generate our workflow for the
interpretation in loss-of-function variants and missense or
in-frame indels (Figure 2). The MAF was determined from
three public population databases: Exome Aggregation
Consortium (ExAC; http://exac.broadinstitute.org/), Ex-
ome Variant Server (EVS; http://evs.gs.washington.edu/
EVS/), and 1000 Genomes Project (1000G; http://
browser.1000genomes.org/index.html). We used three in
silico prediction programs for predicting the effects of mis-
sense variants: SIFT (http://sift.jcvi.org/), PolyPhen-2
(http://genetics.bwh.harvard.edu/pph2/), and Mutation-
Taster (http://www.mutationtaster.org/). SIFT predic-
tions are classified as: tolerated and damaging. Poly-
Phen-2 predictions are classified as: benign, possibly or
probably damaging. MutationTaster predictions are clas-
sified as: probably deleterious, known to be deleterious,
probably harmless, known to be harmless. None of the
programs that predict pathogenicity are perfect, which is
an ongoing challenge for interpretation of genome se-
quence information. Functional studies are critical be-
cause prediction programs have both false negatives and
false positives (117, 126, 127). Improved accuracy in pre-
diction programs would be invaluable for the field because
functional testing is particularly time consuming, but
functional testing is likely to continue to be necessary and
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critically important for interpretation. Functional testing
also has challenges, which we discuss in Section IV.D.

III. Re-evaluation on Pathogenicity and
Penetrance of Reported Genes and Variants
for CPHD

A. Frequently screened and currently most relevant
genes with CPHD

1. PROP1
PROP1 is the most frequently mutated gene known to

cause CPHD. Patients with mutations in PROP1 are typ-
ically identified initially with short stature due to GH de-
ficiency. Most patients also exhibit reduced TSH and PRL
at the time of diagnosis. At the onset of puberty, many
patients with PROP1 mutations also exhibit LH and FSH
deficiency and fail to develop secondary sexual character-
istics. The loss of gonadotropins may also present as an
evolving characteristic identified in adulthood. Many hu-
man patients also develop ACTH deficiency as they age
(128). We hypothesize that the role of PROP1 in estab-
lishing pituitary stem cell pools and promoting pituitary
stem cells to migrate and transition to differentiation is the
basis for progressive hormone failure in humans (129).
Magnetic resonance imaging (MRI) is invaluable for as-
sessing whether the pituitary insufficiency is associated
with other brain abnormalities, disrupted pituitary stalk,
or ectopic posterior pituitary, which is among the varying
range of physical features of the pituitary gland in patients
with PROP1 mutations. Most cases display pituitary hy-
poplasia or aplasia; however, there are reports of pituitary
hyperplasia, a waxing and waning of pituitary hyperplasia

to hypoplasia, as well as reports of pituitary masses (56,
128, 130–137).

The frequency of PROP1 mutations varies among pop-
ulation groups and is highest in Eastern Europe and Russia
(46–48, 64). Two of the most common variants identified
are: a two base pair deletion, c.301_302delAG, which re-
sults in frameshift and early termination of the protein at
amino acid 109; and c.150delA, which results in a frame-
shift at amino acid 53 and early termination at amino acid
164 (47). There are a couple of reports of heterozygous
variants in PROP1 with insufficient data to support the
pathogenicity (138, 139). All of the other cases are either
homozygous or compound heterozygous, recessive,
mostly loss-of-function variants in PROP1. There are no
convincing examples of incomplete penetrance, meaning
individuals with two loss-of-function alleles but no endo-
crine disorder, yet there are examples of variable hormone
profiles and age of onset within a pedigree, including one
unusual case in which the patient reached a normal height
but acquired CPHD as an adult (140). Interestingly, in one
case with a homozygous p.W194* variant, the patient
initially presented with HH and developed progressive
GH and TSH deficiency during adulthood (141). In an-
other familial case, with two affected brothers containing
a compound heterozygous variant (c.150_150delA;
c.334C�T), the patients were initially diagnosed with hy-
pothyroidism due to only a slight deviation from normal
linear growth. In subsequent follow-up exams, deficien-
cies in GH, LH, FSH, and PRL were also detected (136).
Twenty-nine PROP1 variants have been reported, includ-
ing complete gene deletions (six variants), alterations in
splicing (four variants), nonsense variants (eight variants),

Figure 2.

Figure 2. Work flow for assessment on the reported genetic variants of CPHD. A, Loss-of-function (LoF) variants; B, missense or in-frame insertion
and deletion (in/del) variants.
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Figure 3.

Figure 3. Examples of pathogenic variants identified in CPHD genes.
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Figure 3.

Figure 3. (Continued).
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and missense variants (11 variants). Fourteen of the 29
variants are proven pathogenic through functional stud-
ies, analysis of multiple carriers within a pedigree, analysis
of multiple pedigrees, and allele frequency (Figure 3). Five
variants are assumed pathogenic because they cause pro-
tein truncations.

2. POU1F1
POU1F1 is a pituitary-specific transcription factor nec-

essary for expression of GH, TSH, and PRL. POU1F1
contains a POU-specific and POU-homeodomain, which
are both necessary for DNA binding. A total of 30 differ-
ent variants in POU1F1 have been described, and they are
generally recessive with pituitary hypoplasia and CPHD.
All patients with homozygous variants are familial, and all
compound heterozygous cases but one are familial. About
half of these variants have been proven to affect function
with in vitro experiments. We determined that all of the
homozygous and compound heterozygous variants are ei-
ther likely pathogenic or pathogenic resulting in CPHD
(Figure 3). There are three dominant-negative variants re-
ported in POU1F1 that are pathogenic. The POU1F1 mis-
sense p.R271W acts as a dominant inhibitor of transcrip-
tion resulting in CPHD (142). A few p.R271W cases
exhibit cognitive impairment or hearing impairment,
which may be due to hypothyroidism during pregnancy
when the mother carries the same variant (143). Approx-
imately half of the p.R271W variants are fully penetrant.
Two cases are clearly incompletely penetrant, and the rest
of the cases did not present enough family history to de-
termine penetrance. A splicing variant at c.214�1G�T
was also determined to be a dominant-negative variant,
but it is incompletely penetrant (144). The third patho-
genic dominant-negative variant identified is a missense
p.P76L and results in IGHD. This variant is completely
penetrant because all nine members of family carrying it
exhibit the IGHD phenotype (145). Several other
heterozygous variants in POU1F1 have been reported but,
due to a lack of patient data, cannot be labeled as patho-
genic with certainty (58, 64, 146–149). A single case with
a homozygous deletion of POU1F1 together with the
neighboring CHMP2B and VGLL3 genes presented with
an unusual syndromic phenotype. The child exhibited
CPHD and hypoplastic pituitary typical for POU1F1 mu-
tations but had craniofacial defects and cognitive impair-
ment and was initially unresponsive to GH therapy. The
unusual phenotype may be due to the additive effects of
deleting all three genes (150).

3. HESX1
HESX1 is a homeobox gene that plays an important

role in early brain development. It is essential for the for-

mation of the pituitary and the development of the fore-
brain, including optic nerves (151, 152). Both recessive
and dominant variants in HESX1 can cause CPHD (Figure
3). All eight recessive mutations of HESX1 gene can be
classified as pathogenic and have been studied by func-
tional assays or animal models (100, 153–158). Most of
the recessive variants cause CPHD, except that homozy-
gous p.R160C causes SOD and hypopituitarism. Most
variants affect the DNA binding homeodomain or the en-
grailed homology domain that binds corepressors of the
TLE family (p.I26T). Among the 14 heterozygous variants
found in HESX1, four are loss-of-function variants
(c.307_308insAG; c.525delG; c.308T�A, p.L103*;
c.357�3G�A) and can be classified as pathogenic. Only
one heterozygous missense variant, p.S170L, was identi-
fied in two unrelated families, and one family had two
affected children with mild SOD. The rest of the heterozy-
gous missense variants reported in HESX1 are either in-
completely penetrant or lack information on family seg-
regation. More evidence is still needed to assign causality.
Two heterozygous missense variants, p.H42Y and
p.V75L, were identified in HH patients. The variant
p.H42Y is rare in the population databases, but the pre-
diction programs do not agree on whether it is likely dam-
aging. The p.V75L variant is a novel one, not recorded in
any population database, but MutationTaster predicts it
would be tolerated. The functional effects of p.H42Y and
p.V75L were not assessed. More evidence is needed to
determine whether HESX1 mutations cause HH.

4. LHX3
LHX3 is a member of the Lin11, Isl-1, and Mec-3

(LIM) homeodomain protein family of transcription fac-
tors. It is expressed in Rathke’s pouch and the neural tube
and is important for pituitary development and the orga-
nization of spinal cord neurons (159, 160). Variants in
LHX3 that cause CPHD are autosomal recessive and are
mostly missense and nonsense mutations and include two
complete gene deletions of LHX3 (161–163) (Figure 3).
GH and TSH are consistently reduced in patients with
LHX3 mutations, and in descending order PRL, LH/FSH,
and ACTH production is also affected. Limited neck ro-
tation is the most common accompanying symptom (164).
In mice, Lhx3 and Lhx4 are expressed in the ventral motor
neurons; therefore, the limited neck rotation may be due
to abnormal innervation of the anterior neck muscles. Hy-
perplastic anterior pituitary gland, sensorineural hearing
impairment, respiratory difficulties, and skeletal abnor-
malities were also seen in some cases (161–164). The vari-
ants found in LHX3 do not cluster in any particular region
or domain of the protein. Two heterozygous variants in
LHX3, p.T63M and p.A322T, were found in patients
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with CPHD (165). The p.A322T variant has a rare allele
frequency of 0.003, but it is predicted to be benign using
SIFT, which means it is unlikely to be causative. There was
no allele frequency information for variant p.T63M, but
it was also predicted to be benign.

5. LHX4
LHX4 also encodes a LIM homeodomain protein. Mu-

tations in LHX4 mostly result in CPHD cases with auto-
somal dominant inheritance and incomplete penetrance
(50, 66, 98, 167) (Figure 3). There is only one documented
homozygous LHX4 variant (p.T126M) and it is associ-
ated with a lethal phenotype (168). Heterozygous LHX4
variants are generally loss-of-function alleles, and patients
carrying these heterozygous variants present with CPHD,
short stature, small sella turcica and cerebellar defects,
hypoplastic anterior pituitary, respiratory disease, genital
malformations, some craniofacial features, and hypothy-
roidism (50, 66, 165–167, 169–173). In some cases, one
parent carries the putative causative allele and has signif-
icant short stature, but without CPHD or any other phe-
notypic abnormality. There are at least five reports of de
novo deletions encompassing LHX4 (165, 170, 172). The
clinical features of a patient with a de novo heterozygous
522-kb deletion including LHX4, CEP350, QSOX1, and
ACBD6 are highly similar to other heterozygous missense
LHX4 cases. Thus, the hemizygosity for the other genes is
unlikely to contribute to this patient’s phenotype (165). A
7.5-Mb duplication containing LHX4 is associated with
tall stature, cognitive deficits, and craniofacial dysmor-
phism, leaving open the possibility that LHX4 overdosage
could be problematic, but more studies are necessary to
assess this definitively (174). Several LHX4 variants of
uncertain significance were reported in individuals with
CPHD (66, 173). The variants p.242delK (MAF �
0.000364), p.N271S (MAF � not reported (n.r.)), and
p.Q346R (MAF � 8.2e�6) are predicted to be benign and
do not alter LHX4 transactivation properties in trans-
fected cells (173). Although p.G370S (MAF � n.r.) has
normal transactivation properties, it was predicted to be
deleterious (66). Additional studies are warranted to de-
termine whether the p.G370S variant affects LHX4-inter-
acting proteins or in vivo function in zebrafish or mice
(175, 176).

6. OTX2
OTX2 encodes orthodenticle homeobox 2, a member

of the bicoid class of homeobox transcription factors.
OTX2 is involved in the development of the brain and
other head structures, most notably the eyes and pituitary
gland (35, 114, 177, 178). Variants in OTX2 account for
approximately 2–3% of cases of anophthalmia or mi-

crophthalmia (179), and about one-third of these patients
also have pituitary hormone deficiencies (180). Other
symptoms, such as developmental delay, intellectual dis-
abilities, and mouth and ear defects, can occur in variable
combinations with eye and pituitary defects (180). All re-
ported human OTX2 variants are heterozygous, and 19 of
55 currently reported cases of OTX2 mutations in humans
present signs of pituitary disease (Figure 3). Of these, 37%
are sporadic mutations, 42% are de novo, 16% are fa-
milial dominant with complete penetrance, and only 5%
(one case) is familial dominant with incomplete pen-
etrance, although incomplete penetrance is more common
in OTX2 variants overall at 22% (53, 109, 113, 179–
204). Eye, pituitary, and craniofacial defects are also ob-
served in Otx2-heterozygous mutant mice (35). Otx2-ho-
mozygous knockout mice die during midgestation, and
there are at least two strain-specific modifiers that alter the
penetrance of the heterozygous phenotype in mice (114).
Thus, it is likely that genetic and/or environmental factors
influence the penetrance of OTX2 mutations in patients.

7. GLI2

Heterozygous, loss-of-function mutations in GLI2
have been reported in 53 patients with a variety of clinical
features with CPHD on the milder end of the spectrum
(104, 205–218). There is no conclusive evidence of dom-
inant-negative alleles. Ten of these variants can be classi-
fied as pathogenic based on functional studies and segre-
gation in the pedigrees (Figure 3). In many cases, a
pathogenic variant is associated with a variable phenotype
and/or lack of penetrance in the family. For example, over
20% of the variants have one unaffected parent carrying
the allele. GLI2 variants are commonly associated with
HPE, cleft palate, CPHD, and polydactyly. One-third of
the patients with GLI2 variants exhibit CPHD. Most of
these CPHD patients (83%) are nonsyndromic in that they
display no features characteristic of HPE, cleft palate, or
polydactyly. IGHD (13%), hypopituitarism with unspec-
ified hormone deficiencies (6%), and HH (2%) have also
been associated with GLI2 variants, but most of these
cases (85%) have some features of HPE, cleft palate, or
polydactyly. Combinations of HPE, cleft palate, and poly-
dactyly without pituitary hormone insufficiency repre-
sent � 30% of recorded GLI2 variants, with HPE presid-
ing as the predominant phenotype within this group.
Interestingly, two GLI2 variants suspected to be causal are
found in patients who also have variants in ZIC2 and
SHH, two genes that can cause HPE. The combined effect
of the two heterozygous genes could be contributing to the
disease penetrance in these cases.
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8. SOX2
SOX2 is a member of the high-mobility group (HMG)

transcription factors related to SRY (sex-determining re-
gion Y). Sox2 is important for embryonic development
and is expressed in progenitor cells of many tissues in-
cluding the developing brain, pituitary, and the otic and
nasal placodes (219, 220). SOX2 variants are autosomal
dominant with incomplete penetrance (Figure 3). In some
cases, the unaffected carrier mother has been shown to be
a gonadal mosaic (221–223). The clinical features asso-
ciated with SOX2 mutations include eye disorders
(anophthalmia and microphthalmia), brain malforma-
tions (usually hippocampal), intellectual disabilities,
esophageal atresia, genital abnormalities, sensorineural
hearing loss, and hypoplastic anterior pituitary. Pituitary
masseshavebeenobserved inaffectedpatients, but theydo
not progress (219). The hypothalamic-pituitary pheno-
types caused by variants in SOX2 include HH or CPHD
(224–226), but endocrine testing was not performed in
most of these individuals (222, 226–231). Most SOX2
variants result in the absence or truncation of the gene
affecting the HMG box domain (219, 225, 232–235). The
eye and pituitary phenotype variability of SOX2 muta-
tions is demonstrated in a pedigree with a mother and two
children who share a heterozygous deletion resulting in a
frameshift truncating the SOX2 protein, p.G280Afs91*
(236). The mother presented with HH and normal eyes,
whereas the two children presented with eye defects, one
with clinically normal pituitary function and the other
with IGHD.

9. SOX3
SOX3 is another member of the SRY-related HMG

transcription factor family. In familial cases of SOX3-re-
lated hypothalamic-pituitary phenotypes, CPHD is
X-linked with incomplete penetrance. SOX3 variants can
cause CPHD (237–241), IGHD (107), or normosmic HH
(32) with or without intellectual disability and anterior
pituitary hypoplasia. Large duplications of Xq26 that in-
cluded SOX3 were found in individuals with hypopitu-
itarism (238, 240). Some other cases of X-linked hypop-
ituitarism suspected to be caused by SOX3 dosage effects
require further study to identify the precise lesions (242).
Most mutations within the SOX3 gene are insertions and
deletions in the first polyalanine tract where poly-A ex-
pansions are associated with reduced transactivation and
poly-A deletions are associated with increased transacti-
vation (32, 107, 237, 239–241) (Figure 3). There is one
documented amino acid substitution in SOX3 in a male
patient with CPHD (GH, LH, FSH deficiency) without
intellectualdisability (p.R5Q),whichhe inherited fromhis
apparently unaffected mother (237). However, there was

no difference in transcriptional activity when compared
with the wild-type SOX3, so the significance of this vari-
ant is not clear. An example of the incomplete penetrance
of SOX3 mutations is provided by a heterozygous female
with CPHD and deletion of six alanines (237), with an
unaffected carrier father. SOX3 regulatory region rear-
rangements are shown to cause XX male sex reversal in
mice and humans, which can be accompanied with low
gonadotropin serum levels and intellectual disability
(243–246).

B. Less frequently reported genes in CPHD cases

1. BMP4
The 37 documented BMP4 mutations identified in pa-

tients are associated with a range of phenotypes that in-
clude cleft lip, cleft palate, eye and craniofacial defects,
hypospadias, renal hypoplasia or dysplasia, spina bifida,
and colon cancer. Most of the mutations are heterozygous
(34 of 37), half are familial (17), and the other half are
sporadic or de novo. Of the 17 familial mutations, only
four are penetrant. The single reported case of a heterozy-
gous BMP4 mutation with a pituitary phenotype
(p.R300P) is in a sporadic case with CPHD and a hyp-
oplastic pituitary gland (247). The mutation prediction
software suggested that it is pathogenic, and it is posi-
tioned in a highly conserved region of the BMP4 gene, but
no functional studies were carried out. Although we can-
not conclude that this alteration is pathogenic, it is worth
screening CPHD patients for lesions in BMP4 because it
contributes to the formation of Rathke’s pouch in the
mouse (248, 249).

2. FGF8
There are 23 mutations reported in FGF8, and most of

the patients have KS (HH and anosmia). About half of the
cases (11 of 23) are heterozygous and sporadic. The pen-
etrance is unclear in many cases due to the lack of pedigree
information. There are eight cases that are heterozygous
and familial, but of those mutations, only one is penetrant.
Interestingly, three different FGF8 variants are reported to
cause hypopituitarism (Supplemental Figure 1). A patient
homozygous for a p.R189H variant had low ACTH, TSH,
and PRL, along with HPE (103, 250). The parents of the
patient are heterozygous and unaffected. The variant is
predicted to be pathogenic according to mutation predic-
tion software, and the MAF was 0.077. Based upon the
above evidence, it is likely causative. A patient with CPHD
and HH is heterozygous for an FGF8 variant that com-
promised an exonic splicing enhancer site (c.216G�A
p.T72T). No family history was reported, but the nucle-
otide change resulted in higher FGF8 expression and
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higher activity in cell culture (33). It is predicted to be
disease causing and has a MAF of 4.13e�5. We concluded
that this variant is pathogenic. Finally, a patient with low
GH, thyroid hormone, LH, and FSH, hyposmia, and cleft
palate is heterozygous for deletion of a thymine at position
574, which results in protein truncation and likely affects
receptor interaction (c.574delT) (251). This variant is
likely causative. A heterozygous p.Q216E variant was re-
ported in a patient with low GH and SOD (103, 250). The
p.Q216E variant has not been reported in the public pop-
ulation databases, but it is not predicted to be disease
causing. Without more evidence, this variant cannot be
labeled as causative. FGF8 is expressed in the dienceph-
alon and prospective hypothalamus during development
in the human and mouse embryo (103, 250). Loss- and
gain-of-function Fgf8 experiments in the mouse highlight
the importance of Fgf8 in normal pituitary development.
Ectopic expression of Fgf8 in the mouse pituitary gland
leads to a dysmorphic and hyperplastic pituitary gland
that lacks GH and TSH expression (106), whereas reduced
FGF8 expression in an Fgf8 hypomorph causes pituitary
hypoplasia (103, 250). The three patients with FGF8 mu-
tations and hypopituitarism provide convincing evidence
that FGF8 mutations are a cause of CPHD.

3. FGFR1
FGFR1 is one of four FGF receptors and plays an im-

portant role in the development of the nervous system.
Human variants in FGFR1 cause multiple diseases, such as
Pfeiffer syndrome, Hartsfield syndrome, Jackson-Weiss
syndrome, etc. Pathogenic variants in FGFR1 are reported
for HH with or without anosmia. There are several reports
suggesting the oligogenic effects of FGFR1 and other
GnRH deficiency genes, such as HS6ST1 (252) and
SEMA3A (253). Heterozygous missense variants in the
FGFR1 gene were identified in unrelated SOD and CPHD
patients (31, 33, 254). Three variants, p.S450F, p.P483S,
and c.336C�T or p.T112T, were identified in SOD pro-
bands (33). The p.S450F and p.P483S variants were
proved to be loss-of-function mutations by functional
studies. The synonymous change c.336C�T was not ob-
served in healthy controls or public datasets. This variant
is predicted to generate a new exonic splicing enhancer
binding site for the SRp40 splicing factor and/or to disrupt
an overlapping putative exonic splicing enhancer octamer.
Further investigation is needed to assess the functional
effects of p.T112T. The heterozygous variant
c.1342C�T, p.R448W was found in two unrelated
CPHD patients. It is rare (MAF � 0.0008 in ExAC; not
found in EVS and 1000G databases), located in the jux-
tamembrane domain of FGFR1 protein, and predicted to
be damaging by SIFT, PolyPhen-2, and MutationTaster. It

has reduced transactivation activity in luciferase assays in
transfected cells. Thus, FGFR1 p.R448W is a pathogenic
variant. The variant c.320C�T, p.S107L is located in the
Ig-like C2-type 1 domain of FGFR1 protein and was found
in two unrelated Japanese families. The MAF of p.S107L
in the East Asian population is 4%, and both SIFT and
PolyPhen-2 predict that p.S107L is a benign change.
Therefore, p.S107L is unlikely to be a pathogenic variant.
Two unrelated CPHD patients carry p.P772S, but there
was no change in the activity of the p.P772S protein, and
the variant p.P772S is homozygous in several cases from
ExAC and 1000G databases. Thus, the p.P772S is likely to
be a benign variant. The p.V102I change is a variant of
uncertain significance because all the programs predict it
to be benign, and the functional study showed only a mild
reduction in protein activity. More information is needed
to further evaluate p.V102I. Thus, of four FGFR1 variants
reported in CPHD patients, only p.R448W is clearly
pathogenic.

4. GLI3

GLI3 is a zinc finger transcription factor and can act as
a transcriptional activator or repressor of downstream tar-
gets of the SHH pathway. Heterozygous mutations in
GLI3 are responsible for most cases of Greig cephalopo-
lysyndactyly syndrome and Pallister Hall syndrome. Greig
cephalopolysyndactyly syndrome is associated with ab-
normal development of the limbs, head, and face and in-
cludes polydactyly, macrocephaly, and hypertelorism.
Pallister Hall syndrome has some of the same features but
also includes hypothalamic hamartoma and bifid epiglot-
tis. Pallister Hall syndrome can also be associated with
pituitary phenotypes including IGHD (255–258) and
CPHD (256, 259, 260) with pituitary hypoplasia or agen-
esis (Figure 3). Many of the mutations are de novo, al-
though there are a few examples of familial cases. There is
a very strong correlation between the location of the mu-
tation within the gene and the phenotype. Greig cepha-
lopolysyndactyly syndrome is associated with gene dele-
tions and loss-of-function mutations in the amino terminal
third of the protein, which affect DNA binding in the zinc
finger domain, and in the carboxy-terminal portion,
which affects the transactivation domain. Pallister Hall
syndrome is associated with mutations within the middle
third of the protein that cause truncation before the trans-
activation domains, rendering the protein a constitutive
repressor. In mice, Gli2 and Gli3 have overlapping func-
tions in hypothalamic development (261). Thus, GLI3
mutations may cause pituitary dysfunction that is second-
ary to hypothalamic defects.
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5. IGSF1
The X-linked gene Ig superfamily member 1 (IGSF1)

encodes a large, 150-kDa transmembrane protein. It con-
tains 12 C2-type Ig-like loops in two groups of five and
seven loops, respectively, separated by a hydrophobic
linker (262, 263). It is thought that the nascent protein is
cleaved in the hydrophobic linker to produce an N-termi-
nal domain that is retained in the cytoplasm, whereas the
larger C-terminal domain, containing a transmembrane
protein, is translocated to the plasma membrane (264).
IGSF1 is expressed in many different tissues, in particular
the testes and pituitary gland (265–268). Accordingly, 18
different human IGSF1 variants have been reported, many
with multiple affected family members across several gen-
erations, and some have also been found in unrelated fam-
ilies (265, 269–274) (Figure 3). Because the gene is X-
linked, most reported patients have been males who are
therefore hemizygous for IGSF1, presenting with central
hypothyroidism (TSH deficiency) as the primary pheno-
type, with varying combinations of GH and/or PRL defi-
ciencies and macroorchidism as a common symptom (Fig-
ure 3). Female carriers of IGSF1 mutations were initially
reported as unaffected, although more extensive studies
have now shown that a subset (30–60%) of female car-
riers can be affected with central hypothyroidism, PRL
deficiency, delayed age at menarche, and obesity (273,
275, 276). The gene is overall highly likely to be patho-
genic for CPHD, with strong evidence from the human
variants, and cell- and animal-based models have recapit-
ulated some, but not all, of the phenotypes observed in the
human variants. Igsf1-knockout mice also display central
hypothyroidism, with defective pituitary TRH receptor
(TRHR) signaling appearing to be the cause, although the
mutant mice do not display the variety of other hormone
deficiencies and macroorchidism observed in patients
with IGSF1 mutations (265).

6. PAX6
PAX6 is a highly conserved member of the paired ho-

meodomain transcription factor family. Haploinsuffi-
ciency in PAX6 has long been known to cause aniridia
(277, 278). PAX6 mutations provide a classic example of
dosage-sensitive effects, in that homozygosity for loss-of-
function mutations in mice cause anophthalmia, haploin-
sufficiency causes micro-ophthalmia, and overdosage also
causes micro-ophthalmia (279, 280). During mouse pitu-
itary development, Pax6 is transiently expressed on the
dorsal side of Rathke’s pouch between embryonic day (e)
9.0 and e12.5, and it is thought to be involved in estab-
lishing a sharp boundary between dorsal and ventral cell
types (281). But strain background appears to influence
the features associated with Pax6 loss of function (282,

283). A heterozygous deletion encompassing two genes
and a PAX6 enhancer was identified in a patient with
IGHD, cleft palate, and optic disc cupping (200). The pa-
tient’s clinically unaffected father carried the mutation,
but he was mosaic for the deletion. The patient’s brother
had HPE, but no DNA was available for analysis. A
heterozygous variant p.N116S (in the 422 amino acid iso-
form, or p.N130S in the 436 amino acid isoform) was
identified in a Japanese male with CPHD and cryptorchid-
ism, without ocular malformation (200). The mother is
also heterozygous for this variant, but she is clinically un-
affected. The p.N116S variant is not reported in the public
population databases, and it is predicted as damaging by
MutationTaster. The p.N116S variant is located within
the paired homeodomain of the protein and affects the
transactivation function of PAX6, but not the DNA bind-
ing ability (200). Over 350 heterozygous mutations in
PAX6 have been reported in individuals with ocular mal-
formations, and pituitary hormone deficiency has only
been reported for two patients. Therefore, PAX6 muta-
tions rarely cause pituitary abnormalities.

7. PROKR2
Heterozygous and homozygous mutations in the pro-

kineticin receptor 2 (PROKR2) have been reported in pa-
tients with HH or KS, and less frequently in CPHD, IGHD,
or Hirschsprung’s disease. PROKR2 encodes a G protein-
coupled receptor (GPR73L1). Upon stimulation by the
ligand PROK1, G proteins evoke an intracellular calcium
release, and this feature is the basis for testing variant
PROKR2 protein function in vitro. Functional links to
causality in HH and KS are well established (284–290).
Prokr2 is highly expressed in the olfactory placode and
GnRH neurons (291), and Prokr2�/� mice recapitulate
the hypogonadal phenotype of humans with HH (292–
294). Several individuals with HH or KS are heterozygous
or compound heterozygous for PROKR2 mutations and
frequently carry one or more mutations in other genes
mutated in HH or KS (digenic and multigenic cases) such
as KAL1, FGFR1, GNRHR, GPR54, KISS1, and NELF
(284, 295). Thus, HH and KS are excellent examples of
oligogenic disease, and the involvement of PROKR2 is
strongly supported for this condition.

A frameshift and nine missense variants in PROKR2
were found in patients with CPHD or IGHD (Supplemen-
tal Figure 1). It is not clear how mutations in PROKR2
cause CPHD or IGHD. Prokr2 is expressed in the devel-
oping brain and adult posterior pituitary gland, and vari-
ants in PROKR2 were proposed to affect neuronal mi-
gration and/or development of the posterior lobe, which
acts as a signaling center for stimulation of anterior pitu-
itary growth (33, 287, 296). However, in late gestation,
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Prokr2�/� mice have apparently normal expression of
Ghrh, Gh, Prl, Tshb, and Pomc (288). Although
Prokr2�/� mice were not examined postnatally, the exis-
tence of HH but not CPHD or IGHD suggests that mice do
not model the human disorder perfectly. Alternatively,
some individuals may have HH due to pathogenic variants
in PROKR2 and may be GH deficient due to variants in
another gene or genes, resulting in a diagnosis of CPHD.
In support of this idea, a patient with PROKR2 p.R85H
was carrying a heterozygous variant in HESX1 (287). Ad-
ditional studies are necessary to resolve this issue for other
patients with PROKR2 variants and a diagnosis of CPHD
or IGHD.

8. SHH
In 2013, two heterozygous missense variants in the

SHH gene were identified in CPHD patients (297, 298).
Both variants are rare and exhibit incomplete penetrance.
All three software programs predict that p.G427R is be-
nign, and there was no evidence from functional studies to
support the pathogenicity. The other variant, p.A226T,
was originally reported in a patient with HPE (29). The
software prediction programs list it as damaging/disease
causing. Thus, “likely pathogenic” is a more accurate clas-
sification for p.A226T unless convincing functional stud-
ies are carried out.

9. TCF7L1
TCF7L1 gene encodes the transcription factor 7-like 1,

which is a member of the T-cell factor (TCF)/lymphoid
enhancer factor family. Within the nucleus, TCF/lym-
phoid enhancer factors interact with �-catenin to activate
the expression of target genes (299, 300). The WNT sig-
naling pathway and TCFs regulate proliferation of Rath-
ke’s pouch and differentiation of hormone-producing cells
in the pituitary (301–306). In a recent study, TCF7L1
expression was reported in the developing forebrain and
pituitary gland. Mouse studies showed that it is required
in the prospective hypothalamus to maintain normal ex-
pression of the hypothalamic signals involved in the in-
duction and subsequent expansion of Rathke’s pouch pro-
genitors (307). Two heterozygous variants, p.R92P and
p.R400Q, were identified in a screen of SOD patients and
normal family members for mutations in TCF7L1 by
Sanger sequencing (307). The individual with the p.R92P
variant has forebrain defects and normal pituitary func-
tion, and he inherited the variant from his unaffected fa-
ther. The individual with the p.R400Q variant has SOD,
absent posterior pituitary, and small anterior pituitary,
and he is GH deficient. The variant was inherited from the
unaffected mother, and two unaffected siblings also car-
ried the variant. Although the p.R400Q is not completely

penetrant, its pathogenicity was supported by: 1) reduced
repressive function of TCF7L1 p.R400Q in vitro and in
vivo; 2) the rare allele frequency (0.01% in ExAC); and 3)
prediction that it is damaging by SIFT, PolyPhen-2, and
MutationTaster. Thus, TCF7L1 is a candidate gene for
other cases of CPHD with the likely contribution of other
genes or environmental factors.

10. TGIF1
TGIF1 encodes a homeodomain protein that represses

TGF� and retinoic acid signaling. TGF� signaling has
been shown in the paracrine communication of thyro-
tropes and folliculostellate cells in the regulation of TSH
secretion (308). Many heterozygous loss-of-function mu-
tations in TGIF are reported for HPE, and there is one
report of TGIF1 and CPHD with a central incisor, pitu-
itary stalk disruption, and anterior lobe hypoplasia
(p.Q267X), but no functional studies were carried out
(297). Tgif1 and Tgif2 are expressed in the developing
pituitary gland at e14.5 (125). The methods for testing
TGIF1 function are well established (297, 309), and the
nonsense mutation seems likely to be a loss-of-function
allele. Mice homozygous for a Tgif null mutation that
deletes the entire gene are viable on mixed genetic back-
grounds, but on a more pure C57BL/6J background, a
proportion of the Tgif1 null animals die perinatally (310).
A different genetically engineered Tgif1 mutation deleted
exon 3 and is predicted to produce a truncated 80-amino
acid protein (311). Mice heterozygous for this mutation
do exhibit HPE, microcephaly, and exencephaly with high
penetrance on the C57BL/6 background but are protected
on the 129 strain background. Affected animals have al-
tered expression of both Pax6 and Shh. Mouse studies
have demonstrated that Tgif1 and Tgif2 have overlapping
function at gastrulation that is required for development
of the anterior visceral endoderm and for normal Otx2
expression (312). Although additional evidence is needed
to support TGIF1 as a cause of CPHD, the mouse studies
strongly support the idea that it could have a role.

11. CHD7
Heterozygous loss of function in the chromodomain

helicase DNA-binding protein 7 gene (CHD7) is the major
causative factor for CHARGE syndrome (313, 314). Hor-
mone defects include hypogonadism, growth failure with
or without GH deficiency, and hypothyroidism (315). A
CHARGE patient treated with GH exhibited improved
growth rate and achieved target height (316). Two unre-
lated CHARGE syndrome children carrying rare variants
in the CHD7 gene were reported to have congenital hy-
popituitarism due to structural abnormalities of the pitu-
itary gland (317). However, functional studies on these
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two variants, p.P732A and c.IVS35�6T�C, have not
been done. The missense variant p.P732A is rare, but both
SIFT and PolyPhen-2 predict it as benign. CHD7 is ex-
pressed in the pituitary and the hypothalamus (318). Mice
heterozygous for a Chd7 gene trap allele have HH due to
decreased GnRH neurogenesis, and although they have
growth insufficiency, GH and IGF-1 are normal (319).
Additional studies are necessary to understand the growth
insufficiency of individuals with CHD7 mutations.

C. Genes implicated in CPHD that require additional
evidence about causality

1. HHIP
Several members of the hedgehog signaling pathway

have been implicated in HPE and abnormal pituitary func-
tion in humans and mice (218, 320). Because of this, a
candidate gene mutation screening for HHIP (hedgehog-
interacting protein) variants was carried out for 93 CPHD
patients, and one patient was identified as heterozygous
for a de novo c.-1G�C variant in the 5�-untranslated re-
gion (298). Because the �1 position of the Kozak consen-
sus is 28% G and 45% C in humans, this change seems
unlikely to affect translation (321). Consistent with this,
cell culture studies did not show a significant functional
effect. The patient was born preterm at 33 weeks in a
breech delivery, with asphyxia requiring resuscitation and
neonatal jaundice. She needed thyroid and glucocorticoid
hormone replacement as a neonate and was still prepu-
bertal at 13 years. It is difficult to rule out perinatal hyp-
oxia as a contributor to her CPHD (322). Although HHIP
is an excellent candidate gene for CPHD based on the
known role of SHH signaling, the c.-1G�C variant ap-
pears benign. Mice heterozygous for a null allele of Hhip
are unaffected, and homozygotes die at birth due to re-
spiratory distress arising from developmental defects of
the lung (323). They have patterning defects in multiple
organs including the CNS and the pancreas, where endo-
crine cell proliferation is reduced (324, 325).

2. POLR3A
Polymerase RNA 3 DNA directed polypeptide A

(POLR3A) encodes a subunit of RNA polymerase 3. It is
implicated in 4H syndrome (hypomyelination, hypogo-
nadotropic hypogonadism, and hypodontia), one of the
POL3-related leukodystrophies (326). There is one doc-
umented patient with 4H and late onset GH deficiency, a
compound heterozygous variant (p.R1005H, p.A1331T)
with recessive inheritance (327). The p.R1005H variant
(MAF � 0.00019) was predicted deleterious using SIFT
but benign using PolyPhen-2. The p.A1331T variant
(MAF � 8.24e�6) was predicted deleterious with both
SIFT and PolyPhen-2. Approximately 50% of POLR3A

4H patients have short stature, but to date, there are no
reports of endocrine evaluation to support GH deficiency
or hypothyroidism as the cause of short stature in these
patients (326).

3. RBM28
RNA binding motif protein 28 is involved with RNA

processing, being a component of the spliceosomal small
nuclear ribonucleoprotein complexes (328, 329). RBM28
has been implicated in the development of alopecia, neu-
rological defects, and endocrinopathy (ANE) syndrome.
Individuals with mutations in this gene present with vari-
able hair loss, intellectual disability, central adrenal insuf-
ficiency, and tooth abnormalities. There is one docu-
mented variant that is associated with recessive
hypopituitarism: five siblings had a homozygous muta-
tion, p.L351P (MAF � 6.59e�5), predicted to be delete-
rious using SIFT and PolyPhen-2. All five patients had
CPHD and ANE syndrome (329, 330). The hormone de-
ficiencies varied: all of the siblings had GH, LH, and FSH
deficiencies, but only two had ACTH deficiencies, and one
was PRL deficient. One of the five siblings also had ante-
rior pituitary hypoplasia. Rbm28 is expressed in the de-
veloping mouse pituitary gland at e12.5 and e14.5 (125).
Although RBM28 is an excellent candidate, the mecha-
nism by which RBM28 leads to CPHD remains to be
elucidated.

4. WDR11
Mutations in the WD40 repeat containing protein

WDR11 have been implicated in autosomal dominant HH
and KS, and occasionally with craniofacial abnormalities
including cleft palate, sensorineural hearing loss, and
brain and dental abnormalities and WDR11 is expressed
in the developing hypothalamus and pituitary (125, 331).
Six unrelated patients with HH or KS contained sporadic
heterozygous variations in the WDR11 gene (331, 332).
Four of the missense variants (p.A435T, p.H690Q,
p.R448.5q, and p.R395W) were located in the EMX1
binding region, which has overlapping function with
OTX2. Coimmunoprecipitation of EMX1 and WDR11
with these variants determined that p.A435T (MAF �
0.00047) and p.H690Q (MAF � 6.49e�5) completely dis-
rupted EMX1 binding, p.R448.5q (MAF � 0.00045) re-
duced EMX1 binding, and p.R395W (MAF � 0.001) had
no effect (331). These results do not align with SIFT and
PolyPhen-2 predictions because p.R395W was predicted
to be tolerated and possibly damaging by SIFT and Poly-
Phen-2, respectively. Variants p.A435T, p.R448.5q, and
p.F1150L (MAF � 0.001) were predicted to be tolerated
and benign, whereas p.H690Q was predicted to be dele-
terious and probably damaging by SIFT and PolyPhen-2.
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However, the researchers found that the three variants
that altered EMX1 binding were predicted by SPPIDER
(http://sppider.cchmc.org/) (333) to alter protein-protein
interactions. Given the expression pattern, association
with OTX2 and HH, WDR11 may be a candidate gene for
CPHD.

5. IFT172
The intraflagellar transport (IFT) 172 gene encodes a

subunit of the B subcomplex of IFT. The IFT complex is
important for ciliary assembly and maintenance and plays
a role in hedgehog signaling (334). A patient with pituitary
hypoplasia, ectopic posterior lobe, growth retardation,
facial abnormalities, intellectual delay, skeletal abnormal-
ities, and degeneration of kidney and eye was found to be
a compound heterozygote for mutations in IFT172:
p.Cys1727Arg and a novel splice site mutation in intron 4,
c.337–2AC (335). He had a normal GH stimulation test
but persistently low IGF-1 and a positive response to re-
combinant human GH therapy. His features are similar to
patients with Mainzer-Saldino syndrome, which can be
caused by mutations in IFT140 or IFT172. These variants
are predicted to be deleterious, but no functional studies
were done. Although this patient did not have CPHD, his
case suggests that IFT172 could be another candidate gene
for CPHD, and it would likely be associated with other
developmental anomalies. Mice homozygous for null al-
lele die during gestation with multiple anomalies including
neural tube defects, VACTERL-like features, and ho-
meotic transformations of the skeleton (336, 337). A con-
ditional allele exists and could be used to study the effects
of IFT172 on hypothalamic and pituitary development
(338).

D. CPHD candidate genes discovered by WES

1. ARNT2
The ARNT2 gene encodes a basic helix-loop-helix tran-

scription factor: the aryl hydrocarbon receptor nuclear
translocator. The only ARNT2 mutation described to date
is the c.1372_1373dupTC mutation, which occurred in a
family of six generations with consanguineous marriages
(123). Because of the consanguinity, autosomal recessive
inheritance was predicted, and single nucleotide polymor-
phism (SNP) analysis was carried out on four affected
individuals to identify regions of homozygosity. WES was
carried out on one affected individual, and the segregation
of the mutation was confirmed in the pedigree. The clinical
presentation included CPHD, brain, eye, kidney, and uri-
nary tract abnormalities in all individuals homozygous for
the c.1372_1373dupTC mutation, and none of the
heterozygotes. Two SNPs in the promoter region of

ARNT2 affect transcription, but their significance in hu-
man disease is not known (339). Arnt2 has a broad ex-
pression pattern in the mouse embryo, including the CNS,
spinal cord, hypothalamus, pituitary, eye, lung, and kid-
ney, which correlates with the embryonic human expres-
sion (340). The patient phenotype is well connected to the
developmental expression pattern. Mice homozygous for
a null allele of Arnt2 die shortly after birth of unknown
cause, and they lack hypothalamic secretory neurons in-
cluding vasopressin, oxytocin, CRH, TRH, and soma-
tostatin (341, 342). This phenotype is similar to that of
mice with a knockout of Sim1, which encodes a related
protein that is known to dimerize with ARNT2, providing
further support for the role of ARNT2 in CPHD (343,
344).

2. ZSWIM6
ZSWIM6 is a transcription factor containing a zinc fin-

ger domain and a SWIM domain, which are important in
DNA binding and protein-protein interactions, respec-
tively. A heterozygous mutation in the sin-3 like domain of
ZSWIM6 (p.R1163W) has been found in eight unrelated
individuals with acromelic frontonasal dysostosis (345,
346). This disorder is characterized by severe frontonasal
dysplasia, neurocognitive and motor delays, and preaxial
polydactyly. Other associated variable features include
hypopituitarism, absent olfactory bulbs, cryptorchidism,
hypoplastic corpus callosum, and patellar hypoplasia.
There was no detailed endocrine analysis of hypothalam-
ic-pituitary function. Exome sequencing was carried out
on two unrelated affected individuals and a trio with a
mildly affected father, unaffected mother and affected
child (345). A dominant mode of inheritance was initially
considered, but no likely candidate variants were shared
by the father and the affected child, and no variants were
detected in unrelated affected individuals. An apparent de
novo variant was found in the affected child from the trio,
and the same de novo mutation was found in the two
unrelated individuals that were sequenced. An unrelated
adoptee carried the same mutation and may have been
mosaic. Mosaicism could explain the mildly affected fa-
ther as well, although the mutation was not detected in his
DNA sample. Recently, four additional examples of un-
related individuals with acromelic frontonasal dysostosis
were found to have the same p.R1163W variant (346).
MutationTaster and in silico structural and atomic-reso-
lution modeling predict that the p.R1163W variant is
pathogenic, and primary osteoblast cell lines from pa-
tients, but not controls, had alteration in hedgehog sig-
naling transcripts (345). This variant has not been iden-
tified in the normal population, but heterozygous
deletions of ZSWIM6 are found in unaffected individuals,
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suggesting that the p.R1163W change is a gain-of-func-
tion mutation.

3. GPR161
G protein-coupled receptor 161 (GPR161) gene is lo-

cated on 1q24.2. Activation of the receptor elevates
cAMP, which leads to proteolytic conversion of Gli tran-
scription factors (GLI2 and GLI3) into Gli repressor forms
and inhibition of SHH signaling (347). There is a single
report of CPHD caused by a homozygous missense
GPR161 mutation c.56T�A; p.L19Q in a consanguine-
ous family. WES was carried out on two affected individ-
uals and an unaffected sibling, and variants were filtered
considering autosomal recessive inheritance. The parents
were confirmed to be heterozygous for the p.L19Q vari-
ant, and segregation in the pedigree was consistent with
autosomal recessive inheritance. The two affected indi-
viduals both have pituitary stalk interruption syndrome,
other pituitary radiographic abnormalities, and GH defi-
ciency. One sister has IGHD, but the other also has dia-
betes insipidus and central hypothyroidism. PolyPhen-2
predicts that the p.L19Q variant, in a highly conserved
residue, is probably damaging. Structure prediction pro-
grams suggest that the variant is an extracellular loop that
could affect ligand binding, but the ligand is not known,
and SHH signaling is difficult to assess in fibroblasts.
Gpr161 is expressed in the developing mouse pituitary
gland, but detailed expression studies have not been car-
ried out (125). Without further information, it is difficult
to be certain that GPR161 p.L19Q causes hypopituitar-
ism because: 1) this variant has a MAF of 2% among
Asians and 3% overall, and there are seven homozygous
individuals; 2) there is no functional study to prove that
the p.L19Q variant is deleterious; and 3) we would expect
a variant in GPR161 to be gain of function in order to
enhance the suppression of SHH signaling, which seems
unlikely for a recessive inheritance pattern. However,
GPR161 also regulates WNT and retinoic acid signaling,
which are important for normal pituitary development,
and the effects of GPR161 p.L19Q on these signaling
pathways was not assessed (348–350). Identification of
additional individuals with CPHD or IGHD and variants
in GPR161 could enhance the confidence that this gene
has a role in pituitary development and function.

Studies in mice reveal that Gpr161 is important for
development of multiple organs, and genetic background
can have a major effect on the penetrance of the phenotype
(348). Homozygotes for a hypomorphic (reduced func-
tion) C-terminal truncation allele are generally not viable
and have extensive craniofacial abnormalities, spina bi-
fida, and limb defects. On certain genetic backgrounds the
mutants are viable and have a belly spot and vacuolated

lens. SHH signaling is not affected in these mutants, but
retinoic acid and WNT signaling are, and retinoic acid
injection can rescue the neural tube defects. Homozygotes
for a null allele have fully penetrant lethality, craniora-
chischisis, and craniofacial abnormalities (351). These
data suggest that if GPR161 p.L19Q is causal, the allele
may be hypomorphic and influence retinoic acid signaling.

4. HNRNPU
HNRNPU (heterogeneous nuclear ribonucleoprotein

U) is a member of the group of proteins that form com-
plexes with nascent pre-mRNA transcripts in the nucleus
of the cell. It is implicated in CNS abnormalities, with
patients displaying learning disabilities and seizures. Some
individuals are diagnosed with Lennox-Gastaut syn-
drome, which is characterized by epilepsy and occasion-
ally impaired intellectual development (352). HNRNPU
was first implicated as a causal gene for CPHD when
found in a patient during WES of 119 trios with undiag-
nosed disorders who were referred for genetic testing
(353). A splice site variant, c.1615 –1 G�A, was found in
a child with CPHD and epilepsy. It is predicted to be del-
eterious using SIFT and probably damaging by Poly-
Phen-2. HNRNPU interacts with PITX2 and may be in-
volved in the regulation of heterogeneous nuclear RNA
stability (354). HNRNPU can also inhibit GNRH tran-
scription (355, 356). Functional studies are needed to as-
sess the effects of this variant on HNRNPU function.
Mouse HNRNPU differs from human by only a single
amino acid. Mice homozygous for a hypomorphic muta-
tion in Hnrnpu exhibit early embryonic lethality at e9.5,
growth retardation, and defects of the allantois (357).
Mice homozygous for selective deletion of Hnrnpu have
lethal cardiomyopathy and extensive defects in splicing
mRNAs that are important for heart development (358).

5. PNPLA6
PNPLA6 encodes the patatin-like phospholipase do-

main containing protein 6, which is responsible for the
de-esterification of membrane phosphatidylcholine into
fatty acids and glycerophosphocholine. The first PNPLA6
mutation implicated in a human disease was discovered in
2008 in a linkage study focused on a progressive spastic
paraplegia and a distal muscle-wasting phenotype (359).
Since then, autosomal recessive, compound heterozygous
mutations have been found in individuals with a variety of
neurodegenerative conditions including childhood blind-
ness (360), Leber congenital amaurosis (360), Oliver Mac-
Farlane syndrome, Laurence-Moon syndrome, Gordon
Holmes syndrome, and Boucher-Neuhäuser syndrome
(361). The distinction between the syndromes may be ar-
tificial, arising from variable clinical presentations. Indi-
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viduals with Oliver MacFarlane or Laurence-Moon syn-
drome have congenital hypopituitarism including GH,
TSH, and gonadotropin deficiency and chorioretinal at-
rophy. Craniofacial dysmorphology, ataxia, and paraple-
gia may also be evident. Boucher-Neuhäuser and Gordon
Holmes syndromes have cerebellar ataxia and HH, but
chorioretinal dystrophy is present only in the former (361,
362). Childhood blindness results from widespread pho-
toreceptor neuron death (360). Homozygous and com-
pound heterozygous mutations affecting the patatin-like
phospholipase domain are fully penetrant. The mecha-
nism underlying pituitary dysfunction may be impaired
vesicular transport because PNPLA6 mutant cells ex-
hibit reduced secretion in response to stimulation (363).
PNPLA6 is expressed in the developing pituitary gland,
and loss-of-function mutations have been identified in six
unrelated individuals with pituitary dysfunction. Thus,
PNPLA6 should be considered in cases of CPHD or HH
with features characteristic of PNPLA6 associated syn-
dromes. In mice, conditional inactivation of Pnpla6 in the
CNS causes neurodegeneration (364). However, fetuses
homozygous for a null allele exhibit failed placental de-
velopment, impaired blood vessel development, growth
retardation by e7.5, and death by e9 (365). These results
suggest that the human mutations in PNPLA6 may be
partial loss-of-function alleles.

6. CDON
CDON (cell adhesion associated, oncogene regulated)

is a cell surface SHH-binding protein that promotes SHH
signaling activity (366). Heterozygous loss-of-function
mutations in CDON have been reported in HPE patients,
including some with GH deficiency and absent pituitary
(p.P689A and p.T790A, respectively) (102). Cdon�/�

mice recapitulate the range of HPE phenotypes from un-
affected or mildly affected to severe, depending on genetic
background (367). Interestingly, maternal ethanol expo-
sure synergizes dramatically with Cdon loss of function to
produce highly penetrant HPE (36). On a 129S6 genetic
background, Cdon�/� mice are unaffected, but if exposed
to ethanol, 75% have HPE, providing strong evidence for
gene-environment interaction. Cell-based assays using
Cdon�/� mouse embryonic fibroblasts showed that the
p.P689A variant is defective in conferring SHH-depen-
dent induction of Ptch1 and Gli1, but the p.T790A was
not tested. By WES, a novel nonsense variant p.E922* was
recently identified in a patient with pituitary stalk inter-
ruption syndrome and panhypopituitarism (368). The
mother also carried this variant, and she had convergent
strabismus that required surgical correction but normal
height. This variant has never been reported in the public
population database. The mutation of amino acid 922 to

a stop codon will result in a truncated CDON protein
without the transmembrane and intracellular domain,
which is expected to destroy function. Taken together, the
GH-deficient HPE patient with p.689A, the p.E922*
CPHD patient, and the studies in genetically engineered
mice suggest that CDON is a candidate gene for other
cases of CPHD.

E. Summary
We assessed the pathogenicity of reported variants in

CPHD genes according to the current standards in the
field. It is not surprising that most of the criteria were met
by most of the earlier report and more established genes.
More analysis is required to prove causality of some of the
most recently reported candidates. Overall, WES has iden-
tified six new candidate genes for CPHD. To date, only
CDON, ZSWIM6, and PNPLA6 mutations have been
found in multiple unrelated individuals. For disorders that
are highly heterogeneous like CPHD, it can be helpful to
take advantage of the online platform MatchMaker Ex-
change (http://www.matchmakerexchange.org/) to facil-
itate identifying cases with similar phenotypic and geno-
typic profiles among different research groups. In
addition, functional studies are critical for testing the
pathogenicity of the detected variants both in vitro and
in vivo.

IV. Strategies to Improve Diagnostic Yield for
CPHD and Future Directions

NGS tools have identified genetic variants responsible for
many human diseases, and in some cases the molecular
diagnosis has effectively guided physicians to effective
therapeutic intervention (369). We expect that rigorous
application of these methods will result in better molecular
diagnosis of CPHD and provide new insight into pituitary
organogenesis. However, the diagnostic yield for WES in
a research setting is currently between 10 and 30% (370).
The potential reasons for this and some strategies to im-
prove the discovery of new genes and variants are dis-
cussed below.

A. Incomplete coverage of WES
WES is designed to identify coding variants and splice

variants at intron-exon borders in all known genes, but in
practice, the whole exome is not assayed because some
areas of the genome are difficult to capture and/or se-
quence. For example, SOX3 is 75% guanine and cyto-
sine GC, and more than half of the SOX3 coding region
has � 20 fold coverage in the ExAC database (http://
exac.broadinstitute.org/gene/ENSG00000134595). We
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also experienced gaps in covering this gene in our WES
analysis of CPHD patients (unpublished data). To avoid a
false-negative result, such problematic areas should be
screened by Sanger sequencing with modifications (371,
372), but this can be tedious. Improvements in high
throughput capture and sequencing are emerging and are
likely to continue to evolve, resulting in improved diag-
nostic yield (373). Some coverage gaps can be avoided
using exome sequencing methods targeted to specific col-
lections of candidate genes (Figure 4). This enriches the
capture of a region of interest, reducing the likelihood of
incomplete coverage. Targeted candidate gene sequencing
methods can be applied to many samples at a time, pro-
viding an economical way to obtain deep coverage of
genes in the panel (374). This can be a useful first step in
determining causes of disease within a large sample set.

Although the targeted gene panels only provide informa-
tion about the chosen genes or regions, they provide an
economical, high throughput way to screen large sample
sets for candidate genes at greater read depth than would
be obtained with WES.

B. Genetic variants that are difficult to detect with WES
(structural variants, splicing region, enhancers, and
noncoding variants)

Rearrangements and copy number variations (CNVs),
including insertions and deletions (indels) and duplica-
tions, are often missed by WES. Chromosomal microarray
(SNP array) is a first-tier screen for genetic defects caused
by CNVs and is recommended as a complement to exome
sequencing (375). SNP arrays cover a wide area of the
genome, including intergenic and nongenic regions. In-

Figure 4.

Figure 4. Molecular inversion probe (MIP) capture. A, MIP probe panels are synthesized in parallel on a microarray. B, In a single-well reaction,
hundreds to thousands of exons are targeted in parallel by capture probes. As each probe anneals, the target is enzymatically copied and ligated
to the probe backbone to yield a sequencing library. C, Example of MIPS sequencing data at GHRHR showing coverage for two samples, including
a heterozygous missense SNV.
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creasingly dense arrays, up to several million probes, offer
high-resolution mapping of CNVs. SNP arrays typically
detect a pathogenic CNV in 20% of the cases (376). WGS
is another approach to identify lesions missed by WES,
and as the cost of WGS drops, we expect it to replace WES.
In many cases, the bioinformatics analysis must be spe-
cifically directed at examining mismatched paired-end
reads to detect structural variation (377–379). If cytoge-
netic abnormalities or CNVs are known to be present from
karyotype or chromosomal microarray analysis, jumping
libraries can be carried out as an alternative to WGS to
identify precise, gene-level information about the genetic
lesion (380, 381).

Splice enhancers are sequences that enhance the proper
usage of weak splice sites by serine-arginine splice regu-
lators. Variations in exonic splice enhancers that do not
change the encoded amino acid are an important cause of
disease that is missed by most software prediction pro-
grams (382). Indeed, silent mutations in the exonic splice
enhancers of the GH gene are an important contribution
to autosomal dominant IGHD, which can progress to

cause CPHD (383). Skipping exon 3 results in production
of the 17.5-kDa GH isoform that blocks secretion of the
22-kDa biologically active form. Pharmaceuticals that im-
prove the use of weaker splice sites are being explored as
a treatment for this form of IGHD, and for prevention of
the progression to CPHD (384). Improvements in soft-
ware may make it easier to predict exonic splice enhancers
and identify silent, pathogenic mutations.

Variation in regulatory elements is likely to be an im-
portant cause of disease (385), and 88% of the SNPs iden-
tified in GWAS are not in the exome (386). Taken to-
gether, these observations suggest that identifying
regulatory regions of the genome (regulome) is an impor-
tant area of future investigation. Many of the critical reg-
ulatory elements are species, developmental, and/or cell
type specific. Analysis of the pituitary or hypothalamic
regulome has not yet been included in the ENCODE proj-
ect. Thus, more information is needed about the location
of hypothalamic-pituitary regulatory elements for effec-
tive utilization of CNV and WGS information. We have
recently identified the binding sites for PROP1 in rodent

Table 3. CPHD Gene Expression

Gene

Fetala Adult

Mouse Human Mouse Human

Hypothalamus Pituitary Hypothalamus Pituitary Hypothalamus Pituitary Hypothalamus Pituitary

POU1F1 � x ? x � x � x
PROP1 � x ? � � � � �
HESX1 � x x x � � � �
LHX3 x x ? x � x � x
LHX4 x x ? � � � � �
OTX2 x x ? � � � � �
GLI2 x x x x � x � �
SOX2 x x x x x x � �
SOX3 x � ? � � � � �
FGF8 x x x � � � � �
FGFR1 x x x x � � � �
GLI3 x � ? � � � � �
PAX6 x x ? � � � � �
ARNT2 x x x � x � x �
BMP4 x x x � � � � �
IGSF1 x x ? x x x x x
PNPLA6 x x ? x � � � �
SHH x x ? � � � � �
TCF7L1 x x x x � � � �
ZSWIM6 x x ? � � � � �
CHD7 x x ? � � x � �
PROKR2 x ? ? � x � � �
TGIF1 x x ? � � � � �
CDON x ? ? � � � � �
GPR161 ? x ? � x � � �
HHIP ? x ? � � � � �
HNRNPU ? ? ? x � � � �
POLR3A � � ? � � � x x
RBM28 x x ? � � � � �
WDR11 ? x ? � � � � �

a For many genes, numerous embryonic and fetal developmental ages have been examined in mouse. For human genes, information is available for 16-week gestation
in Ref. 391. 	x	 menas enriched expression, 	�	 means the expression is not enriched, and 	?	 means unknown.
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cell lines, which is an important step toward defining the
pituitary regulome (129). A concerted effort to identify
regulatory sites in the developing hypothalamus and pi-
tuitary gland would be valuable information as the field
moves toward WGS analysis of CPHD.

C. Large number of tolerated variants: filtering by
expression profiles and pathways

A challenge in interpreting WES data is the large num-
ber of tolerated, rare variants, which makes it difficult to
filter the genes and nominate the appropriate candidate
for functional studies. Often, WES is applied to trios in-
cluding the unaffected parents and a single affected child.
If the disorder is caused by a recessive mutation or de novo
mutation, the list of candidate genes will usually be man-
ageably short. If the disorder is caused by a dominant
mutation with incomplete penetrance, then the list of can-
didate genes will be much longer, and it could be intrac-
table. If there are multiple affected individuals in a pedi-
gree, it is advisable to apply WES to the most distantly
related affected individuals because they will have fewer
rare variants in common that require filtering.

We reviewed the gene expression patterns of genes that
are known to cause CPHD to determine whether gene ex-
pression profiles would be an appropriate way to prioritize
candidate genes. Gene expression data from BioGPS (http://
biogps.org) (387, 388) and MGI-GXD (Mouse Genome In-
formatics, http://www.informatics.jax.org; Gene Expres-
sion Database [GXD]) (389) were used to determine the
enrichment of the 30 CPHD candidate genes in mouse and
humanhypothalamusandpituitaryatdifferentdevelopment
stages. We considered gene expression enriched if its expres-

sion in the pituitary or hypothalamus was greater than three
times the median in BioGPS or was present in the indicated
tissue in MGI-GXD. For many genes, numerous embryonic
and fetal developmental ages have been examined in the
mouse hypothalamus and pituitary. Such extensive human
gene expression analysis has yet to be performed. Human
16-week fetal pituitary expression and hypothalamic and
pituitary expression for specific genes at various Carnegie
stages were used to determine the developmental human
gene expression for the 30 candidate genes (103, 123, 218,
232, 307, 362, 390, 391).

We found that the known genes have high brain and
pituitary specificity for expression, and notably, expres-
sion is skewed to embryonic, but not adult stages (Table
3). Based on the expression patterns of these known genes,
future candidate genes for CPHD causality should include
genes that affect early head development, including ante-
rior structures at gastrulation, craniofacial placode devel-
opment, and the organogenesis of the hypothalamus and
pituitary gland (21, 392–394). Expression profiling has
been carried out in developing mouse pituitary gland at
e12.5 and e14.5 (125), and in migrating neural crest and
craniofacial placodes (e8.5 to e10.5) (395, 396). Numer-
ous fetal-specific, novel expressed sequence tags were
identified by expression analysis of fetal (male, 16 weeks)
and adult human pituitary glands (391). A more compre-
hensive database on head, hypothalamic, and pituitary
gene expression with spatiotemporal information would
be valuable for advancing CPHD research.

Identifying genes in the CPHD interactome could be
useful in filtering candidate genes for functional studies
(397, 398). For example, several genes that encode mem-

bers of the SHH signaling
pathway are implicated in
CPHD, and as more is
learned about the mecha-
nism of action of other
known CPHD genes, path-
way analysis could assist in
prioritizing candidate genes.
Knowledge of protein inter-
actions with other proteins,
DNA, RNA, and metabo-
lites will also be valuable in
understanding the mecha-
nisms of disease.

D. Functional testing:
genetic editing and animal
models of human disease

As an increasing number
of rare variants are docu-

Box 2. Main Points
Pituitary gland and hypothalamic development are dependent upon the expression

of critical transcription factors and cell-cell signaling.
Mutations in these transcription factor and signaling pathway genes are responsible

for some cases of pituitary hormone deficiency.
Thirty genes have been implicated in CPHD, but 84–90% of the cases still have

unknown etiology.
The most commonly mutated gene in patients with combined hormone deficiency is

the pituitary transcription factor PROP1, which accounts for 11% of cases.
The clinical presentation can vary among patients with the same mutation because

of incomplete penetrance, variable expressivity, and/or the involvement of other
genetic or environmental factors.

The genetics of CPHD place this phenotype in spectrum of disorders ranging from
craniofacial defects such as holoprosencephaly to IGHD.

Advanced genome sequencing technology and bioinformatics hold promise for a
better understanding of the genetic causes of this disorder.

Functional studies are necessary to assess the pathogenicity of novel genetic variants.
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mented in both diseased and healthy populations, under-
standing which genetic changes are benign and which in-
crease disease risk is the new frontier of translational
research. Some of the most common functional charac-
terizations involve cell transfection studies, in which the
mutated gene of interest is transfected into a population of
cells, and the function, expression, and stability of the
mutated protein is characterized. Although imperfect,
these assays can be scaled up to test many variants. Trans-
fection studies can yield false negatives. For example, a
transcription factor variant that does not influence DNA
binding or transactivation of a consensus reporter gene in
transient transfection may still have a negative effect on
protein-protein interactions that are necessary for func-
tion and/or specificity in intact animals because these in-
teractions and chromatin remodeling properties are not
assayed in the cell culture system. For example, OTX2
interactions with LHX1, FOXA2, and LDB1 are impor-
tant for its function (399–401). Protein interactions crit-
ical for LIM homeodomain proteins and POU1F1 are
emerging, but many critical interactions are still unknown
(142, 402).

Animal models are the “gold standard” for functional
studies and can give invaluable insight into the mechanism
of action. For example, mutations in OTX2 fail to activate
transcription of POU1F1 and several other promoters in
transfected cells, which clearly documented the deleteri-
ous effect of the variants on function. However, the mech-
anism of action does not involve regulation of Pou1f1
because deletion of Otx2 in the anterior pituitary has no
effect, and the primary region of Otx2 expression is in the
ventral diencephalon (115). Disruption of Otx2 in early
head development and in the developing hypothalamus
affects FGF signaling, which secondarily affects anterior
pituitary growth. Another advantage of animal models is
that they provide an opportunity to standardize the ge-
netic background, which makes it easier to determine
whether specific mutations are loss-of-function or hypo-
morphic alleles (390).

The time and expense associated with generating
mouse models of human disease has led to the implemen-
tation of zebrafish as a high throughput, economical
method of assessing function of human genetic variants.
This approach is particularly relevant for CPHD studies.
Pituitary development is conserved among vertebrates,
and many of the genes that are critical for mammalian
hypothalamic pituitary development have orthologs that
function the same way in zebrafish (307, 403, 404). Ze-
brafish were used successfully to test OTX2 mutations
discovered in patients with the otocephaly-dysgnathia
complex, and prrx1, pgap1, and msx1 knockdown en-
hanced the severity of the phenotype (192). The use of

morpholinos to disrupt expression has been complicated
by off-target effects and nonreproducible results, however
(405). Genome-editing technology, using CRISPR/Cas9,
is an alternative to morpholino studies in fish and has also
facilitated generating mouse models of disease.

CRISPR is an endonuclease that can be targeted to a
region of the genome in a highly specific manner. Briefly,
CRISPR is transfected into a one-cell embryo with a single-
guide RNA, targeting the endonuclease to the gene of in-
terest, and the digestion and repair process disrupts it
(406). In the presence of a donor DNA plasmid containing
regions of homology to the cut region, knock-ins and
floxed alleles are also possible (407–410). Technological
improvements have increased specificity and efficiency
and reduced off-target effects (411). This technology will
allow us to understand how genes function in a physio-
logical context in a variety of model organisms because it
obviates the need for stem cells; all of the necessary ma-
terials can be injected into fertilized eggs or cells. Gene
editing may have value for treating some genetic disorders
(412), in addition to its role in generating animal models
of disease.

E. Multifactorial disease
Systematic genetic screening for CPHD has only been

reported for a few genes, and it is likely that there are
additional genes to discover because approximately 84%
of the cases are undiagnosed (46). The work summarized
here makes it is clear that CPHD is a genetically complex
disorder involving 30 or more genes. In addition, the re-
sponsible genes, range of syndromic features, and com-
mon occurrence of incomplete penetrance associated with
CPHD suggest that it is an oligogenic disease and part of
a spectrum disorder that includes craniofacial abnormal-
ities. CPHD has genetic and phenotypic overlap with
SOD, HPE, and HH, and there is evidence for multifac-
torial genetic contributions to these disorders (33,
413–415).

Our experience in screening a collection of sporadic
and familial CPHD patients for mutations by WES is con-
sistent with this hypothesis (unpublished results). In our
screen of 69 exomes from 25 unrelated families, we were
able to make a clear molecular diagnosis for only three of
the probands. We found mutations in HESX1 (416) and
GHRHR (unpublished data). We did not identify another
major, simple Mendelian gene like PROP1, which ac-
counts for approximately 11% of cases worldwide (46).
We did identify rare heterozygous variants that are pre-
dicted to be deleterious in six genes that have been impli-
cated as PROP1 targets (129) or in HH, HPE, and SOD
(unpublished data). Six probands have heterozygous, rare,
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likely deleterious variants in two or more genes, suggesting
digenic or oligogenic disease. These results suggest that
CPHD, like HH, can arise from compounding effects of
multiple genes and requires analysis of genetic load in
cases and controls (353).

Given the large sample sizes that are necessary to iden-
tify modifier genes, it is possible that mice could be used to
identify loci and genetic pathways that enhance and sup-
press incompletely penetrant CPHD phenotypes (92,
417). For example, two loci have been mapped that mod-
ify the craniofacial features of Otx2�/� mice, but the un-
derlying genes have not been identified yet (114).

V. Conclusions

Over the past 24 years, 30 CPHD genes have been identified,
whichhas resulted ina remarkable improvement inourbasic
understanding of the development of the hypothalamic-pi-
tuitary axis, the cellular and molecular regulation of hor-
mone production and secretion, and the genetic basis for
endocrinedisorders (seeMainPoints,Box2).Theemergence
of cheaper and efficient NGS technologies promises to ad-
vance both basic and clinical CPHD research. The benefits
will extend beyond CPHD because many of the genes iden-
tified also affect craniofacial development, which is not un-
common and can have serious consequences for quality of
life. As we enter the era of genomic medicine, we anticipate
faster and more accessible genetic testing, enormous data-
sets, and a more complicated decision-making process to
define the genetic causes for human diseases. We envision
that the current NGS technologies will continue to im-
prove in accuracy and diagnostic yield. The focus of this
review has been to assess the candidates of CPHD at both
the gene and variant levels to ensure that reporting of
“causal” genetic defects has sufficient validation and sup-
porting evidence, with the hope that this will be instructive
for genetic analyses of other endocrine system disorders.
We expect this review will provide a foundation for en-
docrinologists and other clinicians as they expand their
work into precision medicine. Finally, we encourage col-
laborations and data sharing among the clinical genetic-
testing laboratories and academic research groups in order
to empower the identification of genes underlying rare
genetic endocrine disorders.
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