28,516 research outputs found

    Access to unpublished protocols and statistical analysis plans of randomised trials

    Get PDF
    Background: Access to protocols and statistical analysis plans (SAPs) increases the transparency of randomised trial by allowing readers to identify and interpret unplanned changes to study methods, however they are often not made publicly available. We sought to determine how often study investigators would share unavailable documents upon request. Methods: We used trials from two previously identified cohorts (cohort 1: 101 trials published in high impact factor journals between January and April of 2018; cohort 2: 100 trials published in June 2018 in journals indexed in PubMed) to determine whether study investigators would share unavailable protocols/SAPs upon request. We emailed corresponding authors of trials with no publicly available protocol or SAP up to four times. Results: Overall, 96 of 201 trials (48%) across the two cohorts had no publicly available protocol or SAP (11/101 high-impact cohort, 85/100 PubMed cohort). In total, 8/96 authors (8%) shared some trial documentation (protocol only [n = 5]; protocol and SAP [n = 1]; excerpt from protocol [n = 1]; research ethics application form [n = 1]). We received protocols for 6/96 trials (6%), and a SAP for 1/96 trial (1%). Seventy-three authors (76%) did not respond, 7 authors responded (7%) but declined to share a protocol or SAP, and eight email addresses were invalid (8%). A total of 329 emails were sent (an average of 41 emails for every trial which sent documentation). After emailing authors, the total number of trials with an available protocol increased by only 3%, from 52% in to 55%. Conclusions: Most study investigators did not share their unpublished protocols or SAPs upon direct request. Alternative strategies are needed to increase transparency of randomised trials and ensure access to protocols and SAPs

    Coexistence of Long-Range Magnetic Order and Superconductivity from Campbell Penetration Depth Measurements

    Get PDF
    Application of a tunnel-diode resonator (TDR) technique for studies of the vortex response in magnetic superconductors is described. Operating at very small excitation fields and sufficiently high frequency, TDR was used to probe small-amplitude linear AC response in several types of single crystals where long-range magnetic order coexists with bulk superconductivity. Full local - moment ferromagnetism destroys superconductivity and can coexist with it only in a narrow temperature range (0.3\sim 0.3 K). In contrast, weak ferromagnetic as well as antiferromagnetic orders can coexist with bulk superconductivity and may even lead to enhancements of vortex pinning. By analyzing the Campbell penetration depth we find sharp increase of the true critical current in the vicinity of the magnetic phase transitions. We conclude that critical magnetic fluctuations are responsible for this enhancement

    Focused laser Doppler velocimeter

    Get PDF
    A system for remotely measuring velocities present in discrete volumes of air is described. A CO2 laser beam is focused by a telescope at such a volume, a focal volume, and within the focusable range, near field, of the telescope. The back scatter, or reflected light, principally from the focal volume, passes back through the telescope and is frequency compared with the original frequency of the laser, and the difference frequency or frequencies represent particle velocities in that focal volume

    Shot-noise-limited spin measurements in a pulsed molecular beam

    Get PDF
    Heavy diatomic molecules have been identified as good candidates for use in electron electric dipole moment (eEDM) searches. Suitable molecular species can be produced in pulsed beams, but with a total flux and/or temporal evolution that varies significantly from pulse to pulse. These variations can degrade the experimental sensitivity to changes in spin precession phase of an electri- cally polarized state, which is the observable of interest for an eEDM measurement. We present two methods for measurement of the phase that provide immunity to beam temporal variations, and make it possible to reach shot-noise-limited sensitivity. Each method employs rapid projection of the spin state onto both components of an orthonormal basis. We demonstrate both methods using the eEDM-sensitive H state of thorium monoxide (ThO), and use one of them to measure the magnetic moment of this state with increased accuracy relative to previous determinations.Comment: 12 pages, 6 figure

    NG7538 IRS1 N: modeling a circumstellar maser disk

    Full text link
    We present an edge-on Keplerian disk model to explain the main component of the 12.2 and 6.7 GHz methanol maser emission detected toward NGC7538-IRS1 N. The brightness distribution and spectrum of the line of bright masers are successfully modeled with high amplification of background radio continuum emission along velocity coherent paths through a maser disk. The bend seen in the position-velocity diagram is a characteristic signature of differentially rotating disks. For a central mass of 30 solar masses, suggested by other observations, our model fixes the masing disk to have inner and outer radii of about 270 AU and 750 AU.Comment: To appear in The Proceedings of the 2004 European Workshop: "Dense Molecular Gas around Protostars and in Galatic Nuclei", Eds. Y. Hagiwara, W.A. Baan, H.J. van Langevelde, 2004, a special issue of ApSS, Kluwe

    Performing a stellar autopsy using the radio-bright remnant of SN 1996cr

    Get PDF
    We present newly reduced archival radio observations of SN 1996cr in the Circinus Galaxy from the Australia Telescope Compact Array and the Molonglo Observatory Synthesis Telescope, and attempt to model its radio light curves using recent hydrodynamical simulations of the interaction between the supernova (SN) ejecta and the circumstellar material (CSM) at X-ray wavelengths. The radio data within the first 1000 d show clear signs of free–free absorption (FFA), which decreases gradually and is minimal above 1.4 GHz after day ∼3000. Constraints on the FFA optical depth provide estimates of the CSM free electron density, which allows insight into the ionization of SN 1996cr's CSM and offers a test on the density distribution adopted by the hydrodynamical simulation. The intrinsic spectral index of the radiation shows evidence for spectral flattening, which is characterized by α = 0.852 ± 0.002 at day 3000 and a decay rate of Δα = −0.014 ± 0.001 yr−1. The striking similarity in the spectral flattening of SN 1987A, SN 1993J and SN 1996cr suggests this may be a relatively common feature of SNe/CSM shocks. We adopt this spectral index variation to model the synchrotron radio emission of the shock, and consider several scalings that relate the parameters of the hydrodynamical simulation to the magnetic field and electron distribution. The simulated light curves match the large-scale features of the observed light curves, but fail to match certain tightly constraining sections. This suggests that simple energy density scalings may not be able to account for the complexities of the true physical processes at work, or alternatively, that the parameters of the simulation require modification in order to accurately represent the surroundings of SN 1996cr

    An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its applications

    Get PDF
    We provide a new algorithm for generating the Baker--Campbell--Hausdorff (BCH) series Z = \log(\e^X \e^Y) in an arbitrary generalized Hall basis of the free Lie algebra L(X,Y)\mathcal{L}(X,Y) generated by XX and YY. It is based on the close relationship of L(X,Y)\mathcal{L}(X,Y) with a Lie algebraic structure of labeled rooted trees. With this algorithm, the computation of the BCH series up to degree 20 (111013 independent elements in L(X,Y)\mathcal{L}(X,Y)) takes less than 15 minutes on a personal computer and requires 1.5 GBytes of memory. We also address the issue of the convergence of the series, providing an optimal convergence domain when XX and YY are real or complex matrices.Comment: 30 page

    Performing heritage: the use of live 'actors' in heritage presentations

    Get PDF
    This paper investigates the phenomenon of 'living history' presentations of heritage, using live 'actors' to portray historical characters. Its aim is to discuss these presentations in the context of what may be understood as 'heritage', and of the nature of 'performance'. Four case studies of heritage sites, each important as a tourist attraction, have been selected for detailed study, together with a number of other examples of heritage performance. It is clear from the empirical work that different performance strategies are employed within the heritage industry and by individual 'actors'. Most of the performers take part as a leisure activity, and many do not consider themselves to be 'performing' at all. The greatest concern of participants lies in the degree of authenticity of the performance. Through 'living history', the 'actors' are drawn into an experience of heritage which has real meaning for them, and which may contribute both to a sense of identity and to an enhanced understanding of society, past and present. The popularity of such presentations with visitors also indicates that similar benefits are perceived by the 'audience'

    Variations on the Deuteron

    Get PDF
    We consider few problems which are related to the deuteron and have simple analytical solution. Relation is found between the deuteron electric quadrupole moment and the npnp-scattering amplitude. The degree of circular polarization of photons is calculated for the radiative capture of longitudinally polarized thermal neutrons. The anapole, electric dipole and magnetic quadrupole moments of the deuteron are calculated.Comment: 14 pages, late

    The chiral Anomalous Hall effect in re-entrant AuFe alloys

    Full text link
    The Hall effect has been studied in a series of AuFe samples in the re-entrant concentration range, as well as in part of the spin glass range. An anomalous Hall contribution linked to the tilting of the local spins can be identified, confirming theoretical predictions of a novel topological Hall term induced when chirality is present. This effect can be understood in terms of Aharonov-Bohm-like intrinsic current loops arising from successive scatterings by canted local spins. The experimental measurements indicate that the chiral signal persists, meaning scattering within the nanoscopic loops remains coherent, up to temperatures of the order of 150 K.Comment: 7 pages, 11 eps figures Published version. Minor change
    corecore