4,472 research outputs found
XMM-Newton observations of the neutron star X-ray transient KS 1731-260 in quiescence
We report on XMM-Newton observations performed on 2001 September 13-14 of the
neutron star X-ray transient KS 1731-260 in quiescence. The source was detected
at an unabsorbed 0.5-10 keV flux of only 4 - 8 x 10^{-14} erg/s, depending on
the model used to fit the data, which for a distance of 7 kpc implies a 0.5-10
keV X-ray luminosity of approximately 2 - 5 x 10^{32} erg/s. The September 2001
quiescent flux of KS 1731-260 is lower than that observed during the Chandra
observation in March 2001. In the cooling neutron star model for the quiescent
X-ray emission of neutron star X-ray transients, this decrease in the quiescent
flux implies that the crust of the neutron star in KS 1731-260 cooled down
rapidly between the two epochs, indicating that the crust has a high
conductivity. Furthermore, enhanced cooling in the neutron star core is also
favored by our results.Comment: Accepter for publication in ApJ Letters, 22 May 200
Spectral Fits to the 1999 Aql X-1 Outburst Data
We present analysis and spectral fits of the RXTE data from the May/June 1999
outburst of Aql X-1. These data include observations in the rising portion of
the hard state, in the soft state, and in the falling portion of the hard
state. We show that the data can be fit by a purely thermal Comptonization
model for all the observations, but that more complicated models cannot be
ruled out. Up to 60% of the corona's power in the soft state may be injected
into non-thermal electrons. The soft state data show approximately constant
optical depth and coronal temperatures over a range of in luminosity,
while they show evidence for a reduction of seed photon temperature with
reduced luminosity and indicate that the characteristic size of the seed photon
emitting region is roughly constant throughout the soft state. The hard state
before the soft state shows a higher luminosity, higher optical depth, and
lower electron temperature than the hard state after the soft state. We find a
reduction of the hard (30-60 keV) X-ray flux during a type I burst and show
that it requires a total corona energy reservoir of less than
ergs.Comment: 10 pages, 7 figues, accepted to A+
Longevity of Replaced ICD/CRT-D
Longevity of Replaced ICD/CRT-D Introduction The longevity of defibrillators (ICD) is extremely important from both a clinical and economic perspective. We studied the reasons for device replacement, the longevity of removed ICD, and the existence of possible factors associated with shorter service life. Methods and Results Consecutive patients who underwent ICD replacement from March 2013 to May 2015 in 36 Italian centers were included in this analysis. Data on replaced devices were collected. A total of 953 patients were included in this analysis. In 813 (85%) patients the reason for replacement was battery depletion, while 88 (9%) devices were removed for clinical reasons and the remaining 52 because of system failure (i.e., lead or ICD generator failure or a safety advisory indication). The median service life was 5.9 years (25th–75th percentile, 4.9–6.9) for single- and dual-chamber ICD and 4.9 years (25th–75th percentile, 4.0–5.7) for CRT-D. On multivariate analysis, the factors CRT-D device, SC/DC ICD generator from Biotronik, percentage of ventricular pacing, and the occurrence of a system failure were positively associated with a replacement procedure. By contrast, the device from Boston Scientific was an independent protective factor against replacement. Considerable differences were seen in battery duration in both ICD and CRT-D. Specifically, Biotronik devices showed the shortest longevity among ICD and Boston Scientific showed the longest longevity among CRT-D (log-rank test, P < 0.001 for pairwise comparisons). Conclusion Several factors were associated with shorter service life of ICD devices: CRT-D, occurrence of system failure and percentage of ventricular pacing. Our results confirmed significant differences among manufacturers
MITS: the Multi-Imaging Transient Spectrograph for SOXS
The Son Of X-Shooter (SOXS) is a medium resolution spectrograph R~4500
proposed for the ESO 3.6 m NTT. We present the optical design of the UV-VIS arm
of SOXS which employs high efficiency ion-etched gratings used in first order
(m=1) as the main dispersers. The spectral band is split into four channels
which are directed to individual gratings, and imaged simultaneously by a
single three-element catadioptric camera. The expected throughput of our design
is >60% including contingency. The SOXS collaboration expects first light in
early 2021. This paper is one of several papers presented in these proceedings
describing the full SOXS instrument
Optical design of the SOXS spectrograph for ESO NTT
An overview of the optical design for the SOXS spectrograph is presented.
SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500)
spectrograph for the ESO 3.58m NTT telescope expected to start observations in
2021 at La Silla. The spectroscopic capabilities of SOXS are assured by two
different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that
adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR
(800- 2000 nm) arm adopts the '4C' design (Collimator Correction of Camera
Chromatism) successfully applied in X-Shooter. Other optical sub-systems are
the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common
Path. We describe the optical design of the five sub-systems and report their
performance in terms of spectral format, throughput and optical quality. This
work is part of a series of contributions describing the SOXS design and
properties as it is about to face the Final Design Review.Comment: 9 pages, 9 figures, published in SPIE Proceedings 1070
The VIS detector system of SOXS
SOXS will be a unique spectroscopic facility for the ESO NTT telescope able
to cover the optical and NIR bands thanks to two different arms: the UV-VIS
(350-850 nm), and the NIR (800-1800 nm). In this article, we describe the
design of the visible camera cryostat and the architecture of the acquisition
system. The UV-VIS detector system is based on a e2v CCD 44-82, a custom
detector head coupled with the ESO continuous ow cryostats (CFC) cooling system
and the NGC CCD controller developed by ESO. This paper outlines the status of
the system and describes the design of the different parts that made up the
UV-VIS arm and is accompanied by a series of contributions describing the SOXS
design solutions.Comment: 9 pages, 13 figures, to be published in SPIE Proceedings 1070
The Acquisition Camera System for SOXS at NTT
SOXS (Son of X-Shooter) will be the new medium resolution (R4500 for a
1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT
telescope on La Silla. It will be able to cover simultaneously optical and NIR
bands (350-2000nm) using two different arms and a pre-slit Common Path feeding
system. SOXS will provide an unique facility to follow up any kind of transient
event with the best possible response time in addition to high efficiency and
availability. Furthermore, a Calibration Unit and an Acquisition Camera System
with all the necessary relay optics will be connected to the Common Path
sub-system. The Acquisition Camera, working in optical regime, will be
primarily focused on target acquisition and secondary guiding, but will also
provide an imaging mode for scientific photometry. In this work we give an
overview of the Acquisition Camera System for SOXS with all the different
functionalities. The optical and mechanical design of the system are also
presented together with the preliminary performances in terms of optical
quality, throughput, magnitude limits and photometric properties.Comment: 9 pages, 7 figures, SPIE conferenc
Swift XRT Observations of the Afterglow of XRF 050416A
Swift discovered XRF 050416A with the BAT and began observing it with its
narrow field instruments only 64.5 s after the burst onset. Its very soft
spectrum classifies this event as an X-ray flash. The afterglow X-ray emission
was monitored up to 74 days after the burst. The X-ray light curve initially
decays very fast, subsequently flattens and eventually steepens again, similar
to many X-ray afterglows. The first and second phases end about 172 and 1450 s
after the burst onset, respectively. We find evidence of spectral evolution
from a softer emission with photon index Gamma ~ 3.0 during the initial steep
decay, to a harder emission with Gamma ~ 2.0 during the following evolutionary
phases. The spectra show intrinsic absorption in the host galaxy. The
consistency of the initial photon index with the high energy BAT photon index
suggests that the initial phase of the X-ray light curve may be the low-energy
tail of the prompt emission. The lack of jet break signatures in the X-ray
afterglow light curve is not consistent with empirical relations between the
source rest-frame peak energy and the collimation-corrected energy of the
burst. The standard uniform jet model can give a possible description of the
XRF 050416A X-ray afterglow for an opening angle larger than a few tens of
degrees, although numerical simulations show that the late time decay is
slightly flatter than expected from on-axis viewing of a uniform jet. A
structured Gaussian-type jet model with uniform Lorentz factor distribution and
viewing angle outside the Gaussian core is another possibility, although a full
agreement with data is not achieved with the numerical models explored.Comment: Accepted for publication on ApJ; replaced with revised version: part
of the discussion moved in an appendix; 11 pages, 6 figures; abstract
shortened for posting on astro-p
Derivative-free global design optimization in ship hydrodynamics by local hybridization
A derivative-free global design optimization of the DTMB 5415 model is presented, using local hybridizations of two global algorithms, DIRECT (DIviding RECTangles) and PSO (Particle Swarm Optimization). The optimization aims at the reduction of the calm-water resistance at Fr = 0.25, using six design variables modifying hull and sonar dome. Simulations are conducted using potential flow with a friction model. Hybrid algorithms show a faster convergence towards the global minimum than the original global methods and are a viable option for design optimization, especially when computationally expensive objective functions are involved. A resistance reduction of 16% was achieved
- …