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Abstract A dynamic radial basis function (DRBF) meta-
model is derived and validated, based on stochastic RBF
and uncertainty quantification (UQ). A metric for assessing
metamodel efficiency is developed and used. The valida-
tion includes comparisons with a dynamic implementation
of Kriging (DKG) and static metamodels for both deter-
ministic test functions (with dimensionality ranging from
two to six) and industrial UQ problems with analytical and
numerical benchmarks, respectively. DRBF extends stan-
dard RBF using stochastic kernel functions defined by an
uncertain tuning parameter whose distribution is arbitrary
and whose effects on the prediction are determined using
UQ methods. Auto-tuning based on curvature, adaptive
sampling based on prediction uncertainty, parallel infill, and
multiple response criteria are used. Industrial problems are
two UQ applications in ship hydrodynamics using high-
fidelity computational fluid dynamics for the high-speed
Delft catamaran with stochastic operating and environmen-
tal conditions: (1) calm water resistance, sinkage and trim
with variable Froude number; and (2) mean value and root
mean square of resistance and heave and pitch motions with
variable regular head wave. The number of high-fidelity
evaluations required to achieve prescribed error levels is
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considered as the efficiency metric, focusing on fitting accu-
racy and UQ variables. DKG is found more efficient for
fitting low-dimensional test functions and one-dimensional
UQ, whereas DRBF has a greater efficiency for fitting
higher-dimensional test functions and two-dimensional UQ.

Keywords Simulation-based design · Dynamic
metamodels · Uncertainty quantification · Radial basis
function networks · Kriging

1 Introduction

Simulation-based design (SBD) of complex engineering
systems requires high-fidelity solvers to guarantee the accu-
racy of the solution. Real-world problems are affected
by different sources of uncertainty (environmental, opera-
tional, geometrical) and therefore need uncertainty quan-
tification (UQ) methods. Combining design optimization
and UQ into stochastic SBD, such as robust and reliability-
based design optimization, requires a high number of
function evaluations and large computational resources.
This represents a significant challenge from the algo-
rithmic and technological viewpoints, requiring efficient
computational methods and high-performance computer
systems.

The application of surrogate models, i.e. metamodels,
alleviates the computational cost by reducing the number
of high-fidelity evaluations needed. Metamodels have been
widely used in several engineering contexts, such as struc-
tural optimization (Jansson et al. 2003), aeronautics and
aerospace (Sobieszczanski-Sobieski and Haftka 1997), and
ground vehicles (Yang et al. 2005), including stochastic
applications and UQ (Giunta et al. 2006; Kennedy et al.
2006).
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The choice of the metamodelling technique is based on
accuracy and efficiency. The latter is based on the number of
high-fidelity evaluations required, since the computational
cost of the metamodelling algorithm is deemed negligi-
ble in comparison. Radial basis functions (RBF, Hardy
1971) have been demonstrated accurate and efficient in
several applications such as analytical test problems (Jin
et al. 2001), stochastic search in optimization (Regis and
Shoemaker 2007; Regis 2011) and UQ (Loeven et al.
2007, He et al. 2013). Accuracy and efficiency of Krig-
ing (Matheron 1963) has been demonstrated for several
applications including optimization subject to uncertainty
(Jin et al. 2003); moreover, extensions of Kriging to
stochastic approaches including uncertain basis/correlation
functions and tuning parameters has been addressed
in Bayesian Kriging, using UQ (Pilz and Spock 2008;
Gramacy and Lee 2008). Although RBF and Kriging are
found adequate for most problems, it is difficult to pre-
dict their effectiveness for new applications. Metamod-
els performance is problem dependent and determined
by different factors such as the degree of non-linearity,
the problem dimensionality, the noisy or smooth behav-
ior of the function and the approach used for training
(Jin et al. 2001).

In order to develop accurate and efficient methods for
metamodel-based analysis and optimization, research has
recently moved from standard (or static) metamodelling
techniques to function-adaptive approaches, also referred
to as dynamic metamodels. A dynamic metamodel is able
to improve its fitting capability by exploiting the informa-
tion that becomes available during the analysis process.
Two main characteristics identify metamodels as dynamic:
an auto-tuning of the metamodel itself and an adaptive
sampling technique.

In auto-tuning, the metamodel itself is not defined a pri-
ori. Auto-tuning can be applied considering several degrees
of freedom, from tuning parameters to the choice of the
metamodel itself. Auto-tuning approaches to RBF have
been applied to auto-configure RBF networks: Mullur and
Messac (2005) propose an extended RBF approach, where
more than one basis function per data point is used result-
ing in an under-determined system of equations; Acar
and Rais-Rohani (2009) and Zhou et al. (2011) present
weighted sum of multiple metamodels, updating the weights
at each iteration for improving the accuracy; Billings and
Zheng (1995) propose a global optimization process using
genetic algorithms; Sarimveis et al. (2004) make use of
a genetic algorithm to minimize the prediction error and
auto-configure dynamically RBF neural networks; Meng et
al. (2009) present self-adaptive RBF neural networks using
differential evolution. Auto-tuning applications to Kriging
have been shown in Peri (2009), Zhao et al. (2011) and
Song et al. (2013). Auto-tuning involves an optimization

procedure, for which the choice of the degrees of freedom
and the minimization algorithm represents a critical issue.

Adaptive sampling supports the design of experiments
(DoE) used for training, which is not defined anymore a
priori but dynamically updated using available information.
The purpose of performing an adaptive DoE is to add train-
ing points where it is most useful and to use the minimum
number of high-fidelity evaluations to represent the func-
tion. Li et al. (2010) shows a classification of sampling
techniques, setting apart non-adaptive DoE from adaptive
DoE. The latter can follow different approaches, depending
on application and aim of the analysis. Relevant issues for
efficient adaptive DoE are the possibility to add more than
one training point per iteration, in order to take advantage
of parallel computing systems (referred to as parallel infill,
Forrester and Keane 2009) and the capability of managing
more than one function at a time (when the relevant outputs
are multiple).

Several metrics are used to evaluate metamodels accu-
racy. R-Square, relative average absolute error and relative
maximum absolute error (Jin et al. 2001), root mean square
error (Jones et al. 1998) and relative root mean square
error (Zhao et al. 2011) are some of the most widely used.
These are based on the Lp norm (suitably normalized) of
the difference between observations and predictions. Met-
rics based on absolute (p = 1) and square (p = 2) errors
give an assessment of the global fitting, whereas maxi-
mum errors (p = ∞) focus on local differences; their
application to metamodels comparison gives similar trends,
especially for smooth functions and predictions. Metrics
and methods for validation of metamodel-based UQ have
been presented by Mousaviraad et al. (2013), providing
errors for function fitting, expected value (EV), standard
deviation (SD) and cumulative distribution function (CDF)
versus numerical benchmark obtained by computational
fluid dynamics (CFD). Metrics for accuracy do not directly
provide the quantification of metamodels efficiency, which
is of primarily importance when high-fidelity solvers
are used.

The objective of the present work is the development
and validation of an efficient dynamic RBF (DRBF) meta-
model based on stochastic kernel functions. A metric for
assessing metamodels efficiency is developed and used. The
validation includes comparison with an existing dynamic
Kriging (DKG) method (Zhao et al. 2011; Song et al.
2013), available through collaboration among co-authors,
and static metamodels for both deterministic test functions
(with dimensionality ranging from two to six) and industrial
UQ problems (Diez et al. 2014, He et al. 2013) with analyt-
ical and numerical benchmarks, respectively. Development
and validation of DKG are beyond the scope of the current
work, which focuses on DRBF and uses a well-established
implementation of DKG for comparison.
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DRBF extends standard RBF using stochastic kernel
functions defined by an uncertain tuning parameter whose
distribution is arbitrary and whose effects on the prediction
are determined using UQ methods, similarly to Bayesian
Kriging. Auto-tuning based on curvature, adaptive sampling
based on prediction uncertainty, parallel infill, and multi-
ple response criteria are used. Since DRBF is aimed at UQ
in ship hydrodynamics problems with low dimensionality,
test functions with dimensionality ranging from two to six
are used. Industrial problems are two UQ applications in
ship hydrodynamics making use of high fidelity CFD for the
high-speed Delft catamaran with stochastic operating and
environmental conditions: (1) calm water resistance, sink-
age and trim for variable Froude number (Fr) (Diez et al.
2014); and (2) mean value and root mean square (RMS)
deviation from mean of resistance and heave and pitch
motions for variable regular head wave He et al. (2013). The
number of evaluations required to achieve prescribed error
levels is considered as the efficiency metric, focusing on fit-
ting capability and UQ variables. An appendix provides the
UQ equations for EV, SD, CDF and stochastic uncertainty
Uf , where f indicates the output function; they are used
both for determining prediction uncertainty stemming from
stochastic tuning parameter in DRBF and for industrial UQ
problems.

The paper is organized as follows. Section 2 introduces
the proposed approach for DRBF and the validation met-
ric used. Section 3 presents the static metamodels and
the dynamic implementation of Kriging used for compar-
ison. Deterministic and stochastic analytical and numeri-
cal benchmarks for validation of current methodology are
presented in Section 4, whereas the associated numerical
results are discussed in Section 5. Final remarks and future
work are given in Section 6. Finally, Appendices A and
B provide the UQ methods used and the equations for the
analytical test functions, respectively.

2 Stochastic dynamic radial basis functions
and evaluation metrics

Given a training set T of M points {xi}Mi=1 with associated
function (f ) evaluations yi = f (xi), standard RBF (with
centers coincident with xi) provides the prediction (f̂ ) at x
as per

f̂ (x) =
M∑

i=1

wiϕ(||x − xi ||) (1)

where ϕ is the kernel function and the wi are the coefficients
of the combination. These are solution of the linear system,
which provides exact predictions at the training points:

Aw = y (2)

where the elements of A are aij = ϕ(||xi − xj ||), with
xi , xj ∈ T , w = {wj } and y = {yi}. The ε power of the
Euclidean distance is used as the kernel function, with ε

treated as a tuning parameter:

ϕ||x − xi || = ||x − xi ||ε =
⎡

⎣

√√√√
n∑

k=1

(xk − xk,i)2

⎤

⎦
ε

(3)

where n is the number of independent variables, xk, k =
1, ..., n. The methodology proposed consists in considering
a stochastic sample of RBF predictions S, defined assuming
the tuning parameter ε as a stochastic exponent, following a
uniform distribution, as per

S =
{
f̂ (x, ε); x ∈ D, ε ∼ unif[εmin; εmax]

}
(4)

RBF has been widely applied using linear and cubic kernels,
corresponding to ε = 1 (polyharmonic spline of first order)
and ε = 3 (polyharmonic spline of third order), respectively
(Gutmann 2001; Forrester and Keane 2009). This suggests
the range of ε to be defined within εmin = 1 and εmax =
3. Note that the choice of the distribution for ε is arbitrary
and, from a Bayesian viewpoint, this represents the degree
of belief in the definition of the tuning parameter.

The prediction provided by the metamodel is given at
each x by the EV of f̂ over ε:

f̂ (x) = EV[f̂ (x, ε)] (5)

which is solved by UQ, using (39) with ξ = ε. The meta-
model stochastic uncertainty U

f̂
(x), is quantified at each x

by the 95%-confidence band of f̂ (x), using UQ as per (38)
and (41). Equations (39) and (41) are solved by Monte Carlo
(MC) method, with random sample {εi}Nε

i=1 ∼ unif[1; 3].

2.1 Auto-tuning

RBF capability in functions approximation is known to
be sensitive to curvature and non-linearities. Hence, the
following approaches are proposed to scale the variables
domain:

1. Non-adaptive. Each independent variable is scaled to
the interval [0; 1].

2. Adaptive. Each independent variable is scaled accord-
ing to the curvature of the function.

The latter is performed with the introduction of a scal-
ing factor resulting from the evaluation of the curvature.
The main idea is that of having a maximum second deriva-
tive having the same value for all variables. Accordingly,
adaptive scaling is performed only when n ≥ 2. An ana-
lytical expression of the second derivative is available from
(1); however, the function is strongly influenced by the local
behavior of the metamodel and the quality of the approxi-
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mation deteriorates with higher derivatives. Hence, a finite
differences method is applied hereafter. Accordingly, the
RBF kernel is defined as

ϕ||x − xi || =
⎡

⎣

√√√√
n∑

k=1

c2
k(xk − xk,i)2

⎤

⎦
ε

(6)

with ck given by

ck =
⎛

⎝

√√√√max

∣∣∣∣∣
∂2f̂

∂x2
k

∣∣∣∣∣− 1

⎞

⎠ rf + 1 (7)

where rf is a relaxation factor. Herein, the identification of
the maximum value of the second derivative in (7) is per-
formed using a deterministic particle swarm optimization
algorithm (Campana et al. 2009) over x.

Note that if a non-adaptive normalization of the indepen-
dent variables is used, ck becomes

ck = 1

max{xk} − min{xk} (8)

2.2 Adaptive sampling

An initial training set T is built by evaluating the func-
tion at M0 = 2n + 1 points: one training point is set at
the center of the domain and the other training points are
set at the center of each boundary hyper-face. Predictions
are made available as EV of f̂ (5) with related metamodel
stochastic uncertainty U

f̂
(38). Additional training points

are placed where the metamodel stochastic uncertainty
is largest:

xM+1 = argmax[U
f̂
(x)] (9)

Equation 9 is used to increase the size of T and update the
metamodel iteratively, as shown in Fig. 1. For the solution
of (9), the same deterministic particle swarm optimization
used for (7) is applied.

It may be noted that the approach proposed for adap-
tive sampling is similar to considering the maximum
mean square error (MMSE) in Kriging (Sacks et al.
1989). This can be extended taking into account a global

metric, by integration of U
f̂

over the domain, simi-
larly to Kriging’s integrated mean square error (IMSE,
Sacks et al. 1989). Herein, the maximum value of U

f̂

through (9) is preferred, since relatively easy to use
and implement, leaving alternative sampling criteria for
future work.

2.3 Parallel infill

The parallel infill is performed by applying sequentially (9)
using a group of I dummy predictions f̂ as follows.

Step 1. For i = 1 : I , do
identify xM+i as per (9);
predict f̂ (xM+i ) using the metamodel;
add [xM+i ; f̂ (xM+i )] to the training set T .

End
Step 2. For i = 1 : I , do (in parallel)

evaluate the function f (xM+i );
add [xM+i ; f (xM+i )] to the training set T .

End
(10)

This method makes an effective use of parallel com-
puting resources; however, its accuracy is affected by the
number of training points per group, I , and may not be as
high as using a purely sequential scheme, I = 1 (Forrester
and Keane 2009).

2.4 Multiple response criteria

In order to perform adaptive sampling when high-fidelity
simulations provide multiple responses, two criteria are
formulated and applied:

Uave: new training points are placed based on the maxi-
mum average value of the uncertainty among the functions:

xM+1 = argmax[Ū
f̂
(x)] (11)

where

Ū
f̂
(x) = 1

m

m∑

j=1

U
f̂j

(x)R−1
j (12)

Fig. 1 DRBF model: uncertainty-based adaptive sampling
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where U
f̂j

indicates the stochastic uncertainty of the j th

function, Rj = max{fj }− min{fj }, and m is the number of
responses.

Umax: new training points are defined, based on maxi-
mum absolute uncertainty among the functions:

xj = argmax[U
f̂j

(x)] (13)

xM+1 = argmax[U
f̂j

(xj )R
−1
j ] (14)

Note that in the case of multiple responses, (2) may be
rewritten in the compact form:

AW = Y (15)

where W = [w1| . . . |wm] and Y = [
y1| . . . |ym

]
, with

subscripts indicating different output responses. The above
system of equations may be solved at once, taking advantage
of a single factorization of the matrix A.

2.5 Evaluation metrics

In order to investigate the effectiveness of metamodels,
function predictions and metamodel-based results are sys-
tematically validated. For each training set, the fitting error
is computed as the normalized error between predictions
and benchmark values:

E(x) = [f (x) − f̂ (x)]
max{f } − min{f } (16)

For a given validation set V = {xi}Pi=1, the normalized root
mean square error is given by

ERMS =
√√√√ 1

P

P∑

i=1

E(xi)2 (17)

For current UQ applications, metamodel-based estima-
tors are evaluated following Mousaviraad et al. (2013) and
the error for EV, SD and CDF are defined by:

EEV = EV − EVV

EVV
(18)

ESD = SD − SDV

SDV
(19)

ECDF =
√√√√ 1

K

K∑

k=1

[
CDFV (yk) − CDF(yk)

]2 (20)

where EV, SD and CDF are evaluated using (39-41)
(Appendix A) substituting ξ with x. Superscript V indicates
validation values, obtained using f instead of metamodel
predictions f̂ .

Finally, the average UQ error is defined as

EUQ = |EEV| + |ESD| + ECDF

3
(21)

When multiple output functions are assessed, fj , j =
1, ..., m, all errors in (17-21) are studied by their average
among multiple responses:

ĒX = 1

m

m∑

j=1

EX,j (22)

where EX,j is respectively ERMS, EEV, ESD, ECDF, and
finally EUQ for output function fj . ĒRMS and ĒUQ are used
to provide an overall assessment of accuracy with focus
on function fitting and UQ, respectively; the convergence
of such parameters versus the training set size M provides
an insight of the metamodel efficiency. Thus, the number
M required to achieve specified errors is introduced as an
important metric, providing the computational cost. 5, 2.5
and 1.25% error levels are considered, since comparable to
the typical uncertainty of CFD outputs due to iterative grid
and time step convergence:

M5% the minimum number of training points required
to achieve ĒX < 5%

M2.5% the minimum number of training points required
to achieve ĒX < 2.5%

M1.25% the minimum number of training points required
to achieve ĒX < 1.25%

Mave average of the above,
Mave = (M5% + M2.5% + M1.25%) /3

(23)

where Mave is used as an overall index for metamodels
efficiency.

3 Static metamodels and dynamic Kriging used
for comparison

3.1 Static metamodels

The following static metamodels are used for com-
parison: kth order inverse distance weighting, IDW
(Shepard 1968); radial basis function network with multi-
quadric and inverse multiquadric kernels, RBF MQ/IMQ
(Buhmann 2003); kth order polyharmonic spline, PHS
(Wahba 1990); least-square support vector machine with
multiquadric and inverse multiquadric kernels, LS-SVM
MQ/IMQ (Suykens et al. 2002); ordinary Kriging with lin-
ear and exponential correlation functions, OKG lin./exp.
(Peri 2009); an implementation of stochastic RBF with-
out adaptive scaling and sampling, implementing power-
law, multiquadric and inverse multiquadric kernels, SRBF
P/MQ/IMQ; and DKG without adaptive sampling. A sum-
mary of static techniques used is given in Table 1.
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Table 1 Summary of the static metamodels used for comparison

Technique Acronym Kernel Tuning parameter

Stochastic-speed Stochastic-wave

Inverse distance weighting IDW 1/rk k = 2, 4, 6 k = 2, 4, 6

Radial basis function network RBF

√
1 + (α r)2 (MQ) α = 10; 100; 1, 000 α = 1; 10; 100

[1 + (α r)2]−0.5 (IMQ) α = 5; 10; 15 α = 0.75; 1.0; 1.25

Polyharmonic Spline PHS rk , odd k; rk log(r), even k k = 1, 2, 3 k = 1, 2, 3

Least-square support vector machine LS-SVM
√

1 + (α r)2 (MQ) α = 10; 100; 1, 000 α = 1; 10; 100

[1 + (α r)2]−0.5 (IMQ) α = 5; 10; 15 α = 0.75; 1.0; 1.25

Ordinary Kriging OKG
1 − (α r) (lin.) not applied α = 0.25; 0.5; 1

exp (−α r) (exp-) not applied α = 0.25; 0.5; 1

Stochastic radial basis functions SRBF

rε (P) not applied ε ∈1;3√
1 + (α r)2 (MQ) not applied α ∈[1;100]

[1 + (α r)2]−0.5 (IMQ) not applied α ∈[0.75;1.25]

Dynamic Kriging (without adaptive sampling) DKG auto-selected auto-selected

3.2 Dynamic Kriging

The response f̂ is modeled in two parts, namely the mean
structure and the stochastic process:

f̂ = φT β + Z (24)

Z is a Gaussian random process with zero-mean and covari-
ance given by

C(x1, x2) = σ 2ρ(θ , x1, x2) (25)

where σ 2 is the process variance, ρ is the spatial correlation
function and θ collects the correlation function parameters.
The prediction provided by the Kriging model is

f̂ (x) = φT β + rT R−1(y − Fβ) (26)

where y are the observations at the training points, y =
{f (xi)}, R = {ρ(θ , xi , xj )}, r(x) = {ρ(θ , x, xi}, F =
[φ(γ , x1), φ(γ , x2), ..., φ(γ , xM)]T , and φ are the basis
functions with tuning parameters collected in γ . Using a
least-squares estimation, β is approximated by β̂ as

β̂(x) = (FT R−1F)−1FT R−1y (27)

3.2.1 Auto-tuning

The dynamic Kriging presents an automatic selection of
the basis-functions, of the correlation function and of the
correlation function parameter. Note that if auto-tuning is
not performed the expected value of the prediction and
the intrinsic uncertainty stemming from the choice of the
basis and correlation functions including γ and θ may
be evaluated by UQ as in Bayesian Kriging. Herein, the

mean structure F is selected minimizing the cross-validation
error among ordinary (OKG) and first/second-order uni-
versal Kriging (UKG) methods; the best ρ(θ , x1, x2) and
θ are identified using the maximum likelihood estimation
(MLE, Martin and Simpson 2005). Assuming a Gaussian
distribution, the log-likelihood of the model parameters is
defined as

l = −M

2
ln(2πσ 2)− 1

2
ln(|R|)− 1

2σ 2
(y−Fβ)T R−1(y−Fβ)

(28)

Computing the derivative with respect to β and σ 2 and using
the approximation in (27), leads to an estimation of the
process variance

σ̂ 2 = 1

M
(y − Fβ̂)T R−1(y − Fβ̂) (29)

and then of l. The goal is to find the optimal θ that
maximizes the likelihood function. To solve the opti-
mization problem a generalized pattern search (GPS,
Torczon 1995) is applied; GPS is sensitive to the ini-
tial guess, therefore, a genetic algorithm (GA) is used to
get a best-candidate initial guess. The advantage of using
derivative-free approaches such as GPS and GA is that
gradient information of the log-likelihood is not required
and the method has good performances also in the pres-
ence of noisy functions. When the training set size is
small, MLE could be inaccurate, therefore a penalized-MLE
(PMLE) is introduced (Li and Sudjianto 2005). The log-
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likelihood function is modified adding a penalty function,
such as

Q = −M

2
ln(2πσ 2) − 1

2
ln(|R|) (30)

− 1

2σ 2
(y − Fβ)T R−1(y − Fβ) − M

N∑

i=1

λ|θi|

λ is the penalty function parameter and is identified using a
GPS with the cross-validation error.

3.2.2 Adaptive sampling

M0 initial training points are distributed in the design space
using a Latin centroidal Voronoi tassellation (LCVT, Saka et
al. 2007) sampling, then the Kriging model is built. Once the
metamodel is constructed, it is used to predict the function
and to approximately bound the errors in such predictions.
The prediction mean square error (MSE) from the Kriging
model (Sacks et al. 1989),

MSE[f̂ (x)] = σ 2

{
1 −

[
φT (x) rT (x)

](0 FT

F R

)−1 [
φ(x)

r(x)

]}

(31)

is taken as the metric of accuracy. Larger values of predic-
tion MSE are associated with larger uncertainty in predic-
tion (Booker et al. 1999); since the current DKG has been
developed for general purpose, namely to minimize the pre-
diction variance over the domain, the MMSE is used to
determine the choice of new training points:

xM+1 = argmax{MSE[f̂ (x)]} (32)

As alternative metric to MMSE, one could use the inte-
grated value of MSE over the domain, IMSE. This provides
a global MSE-based metric and has been used for efficient
DoE in several Kriging applications (see, e.g., Buslig et al.
2014). Herein, MMSE is preferred for its straightforward
implementation and ease of use, in analogy with the choice
made for adaptive sampling with DRBF.

3.2.3 Parallel infill

In the previous section, training points are selected one-at-
a-time following a sequential sampling approach. If parallel
computing is available, multiple training points by parallel
infill may be more convenient than one-at-a-time sampling.
However, if multiple training points are selected only by
prediction MSE, many training points could be clustered
in some small region. This is because test points near the
test point with the largest prediction MSE also have large
prediction MSE. Therefore, multiple training points need
to be distributed considering the distances to existing and

new training points. Thus, I new training points are selected
based on the following steps:

Step 1. Prediction MSE (PMSE) is calculated using current
DoE training points.

Step 2. The test point with the largest PMSE is inserted.
Set i = 1.

Step 3. If i = I , go to Step 5. Otherwise, go to Step 4.

Step 4. The nearest distance D(x) from existing training
points is calculated from the test points.
The test point with the largest PMSE(x) · D(x) is
inserted. Set i = i + 1. Go to Step 3.

Step 5. At all selected test points, responses are evaluated
in parallel.

(33)

It may be noted that a common procedure to imple-
ment the parallel infill with Kriging is that of using I

dummy predictions, similarly to the approach shown for
DRBF in Section 2.3. This approach requires a number of
I −1 sequential evaluations of the Kriging model and could
be computationally expensive, depending on the problem
dimension and the value of I . For this reason, herein the use
of PMSE together with the nearest distance D from exist-
ing training points is preferred, allowing for a good level
of accuracy at a reasonable computational cost. Issues con-
nected with the parallel infill of Kriging models are beyond
the scope of the current work, and not further addressed.

3.2.4 Multiple response criterion

If multiple responses are assessed, the maximum normal-
ized PMSE among multiple responses is used. Thus, new
training points are inserted for more highly non-linear
responses, similarly to (13) and (14) for DRBF.

4 Analytical and numerical benchmark
for deterministic and stochastic validation problems

4.1 Test functions fitting

Test functions (Lucidi and Piccioni 1989; Ali et al. 2005;
Taddy et al. 2009) are used as analytical benchmark
and presented in Appendix B. These have dimensionality
ranging from two (low-dimensionality) to six (medium-
dimensionality), with different degree of non-linearities.
Among 2D functions, three are polynomial (two of fourth
order and one of sixth order), one is a combination of a
fourth order polynomial and a trigonometric function, one
is trigonometric. Among 3D functions, one is a fourth order
polynomial and one is exponential. 4D functions include
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two fourth order polynomial, whereas the 6D function is
exponential. The number of independent variables and their
bounds are summarized in Table 2.

4.2 Uncertainty quantification problems for high-speed
catamaran

The two ship hydrodynamics problems represent extensions
of the basic resistance, sinkage and trim and seakeeping
(resistance, heave and pitch) deterministic problems to UQ
problems. In ship design, resistance and seakeeping are usu-
ally evaluated using towing tank tests; however, recently
CFD is replacing the build and test approach with SBD,
which offers more detailed analysis and innovative opti-
mized designs. Formulation of resistance and seakeeping as
UQ problems is relatively new and preparatory to devel-
opment of stochastic optimization approaches. The present
research builds on previous Delft catamaran studies of deter-
ministic single and multiple objective optimizations for
resistance (Kandasamy et al. 2013) and resistance and sea-
keeping (Tahara et al. 2012) and UQ for calm water (Diez
et al. 2014) and seakeeping (He et al. 2013) including
comparison of several static metamodels.

4.2.1 Uncertainty quantification for high-speed catamaran
in calm water with stochastic speed

The first ship hydrodynamics problem is the one-
dimensional UQ of the Delft catamaran performances in
calm water, presented in (Diez et al. 2014). Main particu-
lars and conditions are shown in Table 3, whereas the hull
geometry is presented in Fig. 2. The towing tank model
scale (Kandasamy et al. 2013) is assumed for the cur-
rent problem. The model has two degrees of freedom (it
is free to sink and trim). The speed U [m/s] is taken as
an operational uncertainty. Accordingly, the Froude number
(used as non-dimensional speed, Fr = U/

√
gLpp , with

g acceleration of gravity [m/s2] and Lpp length between
perpendiculars [m]) is assumed to have a Normal dis-
tribution with expected value EV(Fr) = 0.5 and a stan-
dard deviation SD(Fr) = 0.05. The distribution is trun-
cated to its 95% confidence interval, which have lower
and upper bounds approximately equal to EV(Fr)±2SD(Fr)
respectively.

Numerical benchmark consists in fi(Fr), EV(fi),
SD(fi ), and CDF(fi) with i = 11, ..., 13. Specifically,
f11 = CT = RT /0.5ρU2S (where RT is the total resis-
tance [N]; ρ is the water density [kg/m3]; S is the static
wetted area) is the non-dimensional total resistance, f12 =
σ = z/Lpp (where z is the stationary sinkage at the
center of gravity G [m]) is the non-dimensional sinkage
and f13 = τ is the stationary trim angle [rad]. Output
functions and input variable bounds are summarized in
Table 4. Numerical benchmark values are given by con-
verged MC with Latin hypercube sampling, using N = 257
URANS computations. Benchmark functions are shown in
Fig. 3.

4.2.2 Uncertainty quantification for high-speed catamaran
in stochastic regular wave

The second ship hydrodynamics problem is the two-
dimensional UQ of the Delft catamaran performance in
regular head waves as presented in He et al. (2013). A
full-scale ship is considered and main particulars and con-
ditions are included in Table 3. The ship (Fig. 2) is free
to heave and pitch. A design speed corresponding to Fr
= 0.5 is assumed and stochastic wave conditions pertain
to sea state 6, described by the Bretschneider spectrum.
Specifically, the wave period and height, T and H , follow
a joint probability density function which depends on the
spectrum parameters. The focus of the analysis is on the
output variables: x-force coefficient Cx = −Fx/0.5ρU2S

(where Fx is the force in x direction), heave ζ = z/Lpp

Table 2 Test functions
Function No. of Variable Max. training Validation

variables bounds set size, Mmax set size, P

f1 Branin-Hoo 2 −5 < x1 < 10; 0 < x2 < 15 100 10,000

f2 Six-hump camel back 2 −2 < x1 < 2; −1 < x2 < 1 100 10,000

f3 Rosenbrock 2 −2 < x1 < 2; −1.5 < x2 < 2 100 10,000

f4 Quartic 2 −2 < x1 < 2; −1 < x2 < 1 100 10,000

f5 Shubert 2 −4 < xk < 2,∀k 250 10,000

f6 Rosenbrock 3 −2 < xk < 2,∀k 150 15,625

f7 Hartman 3 0 < xk < 1,∀k 150 15,625

f8 Rosenbrock 4 −2 < xk < 2,∀k 300 160,000

f9 Styblinski-Tang 4 −5 < xk < 5,∀k 300 160,000

f10 Hartman 6 0 < xk < 1,∀k 500 531,441
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Table 3 Delft catamaran main
particulars and simulation
conditions

Main Particular/condition Symbol Value, stochastic-speed Value, stochastic-wave

Length overall [m] Loa 3.822 105.4

Length between perpendiculars [m] Lpp 3.627 100.0

Breadth overall B/Lpp 0.313 0.313

Breadth demi-hull b/Lpp 0.080 0.080

Draught at mid-ship T /Lpp 0.050 0.050

Distance between center of demi-hulls s/Lpp 0.234 0.234

Longitudinal center of gravity Lcg/Lpp 0.527 0.527

Vertical center of gravity Kg/Lpp 0.074 0.113

Pitch radius of gyration ρy/Lpp not used 0.261

Froude number Fr [0.402; 0.598] 0.5

Reynolds number Re 1.019 107 7.144 106

Wave period [s] T not used [2.2;17.7]

Wave height [m] H not used [0.5;6.4]

and pitch θ motions. The following global output param-
eters are assessed: time mean and root mean square devi-
ation from mean (RMS) of output time-histories η(t),
evaluated as

η̄ = 1

t2 − t1

∫ t2

t1

η(t)dt (34)

ηRMS =
{

1

t2 − t1

∫ t2

t1

[η(t) − η̄]2dt

}0.5

where t2 − t1 = T .
Numerical benchmark is defined using fully non-linear

irregular wave URANS statistically converged computation,
and used to validate UQ methods based on regular wave
models. Numerical benchmark to validate metamodel-based
UQ is defined using converged Markov-chain MC with
N = 129 regular wave URANS and consists in fi(T , H),
EV(fi), SD(fi ), and CDF(fi) with i = 14, ..., 19. Specif-
ically, f14 = C̄x , f15 = Cx,RMS, f16 = ζ̄ , f17 =
ζRMS, f18 = θ̄ and f19 = θRMS, as summarized in
Table 4. Benchmark functions are shown in Fig. 4. These
are made available for adaptive sampling by a thin plate
spline model.

Fig. 2 Delft catamaran geometry and dimensions

5 Numerical results

Test functions results are presented showing: convergence
of DRBF MC method for EV and U

f̂
for f1; average fit-

ting error ĒRMS, using different relaxation factors (rf =
0, 0.25, 0.5, 0.75, 1.0 as per (7)) and non-adaptive scal-
ing as per (8); breakdown of results among test functions,
comparing DRBF and DKG, and effects of sequential
sampling (no parallel infill, I = 1) and parallel infill
using I = 5 and I = 10 (10). Table 2 shows the
maximum training set size Mmax and the size of the val-
idation set {xi}Pi=1, the latter defined by a regularly dis-
tributed Cartesian grid; values of Mmax and P are chosen
according to the problem dimensionality and the degree of
non-linearity.

Catamaran problems are assessed presenting: adaptive
sampling and fitting error E; average ĒRMS and ĒUQ,
using different criteria for multiple response and different
relaxation factor; breakdown of results among functions,
comparing DRBF and DKG; effects of sequential sampling
(I = 1) and parallel infill (I = 5 and 10) and conver-
gence of ĒRMS and ĒUQ versus M , with comparison to
static metamodels from earlier work. No scaling approach
is applied for the stochastic speed case since the problem is
one-dimensional, whereas different relaxation factors (rf =
0, 0.25, 0.5, 0.75, 1.0) and non-adaptive scaling are used
for the stochastic wave problem. The maximum training set
size is set to Mmax = 33 and 65 (Table 4), according to
Diez et al. (2014) and He et al. (2013) for the two catamaran
problems, respectively.

5.1 Test functions fitting

Figure 5 shows the convergence of the MC method used to
build the DRBF. f1 is shown as an example, however, the



356 S. Volpi et al.

Table 4 Delft catamaran UQ problems

Problem Function No. of Variable Max. training Validation

variables bounds set size, Mmax set size, P

Stochastic-speed f11 resistance, CT

f12 sinkage, σ 1 0.402 < Fr < 0.598 33 128

f13 trim, τ

Stochastic-wave f14 x-force mean, C̄x

f15 x-force RMS, Cx,RMS

f16 heave mean, ζ̄ 2 2.2 < T < 17.7 65 64

f17 heave RMS, ζRMS 0.5 < H < 6.4

f18 pitch mean, θ̄

f19 pitch RMS, θRMS

plot in Fig. 5 displays the typical behavior of all the prob-
lems considered. EV and U

f̂
are shown for x = xM0+1,

given by (9), using a number of training points Nε up to
1,000. Variations of EV are within ±1% of final value for
all Nε > 200 whereas U

f̂
is within ±1% of its final

value for Nε > 800. Accordingly, hereafter a number of
Nε = 1, 000 is selected. The cost of the resulting MC proce-
dure is reasonable for test functions and negligible for UQ,
if compared to the cost of CFD simulations.

Table 5 shows a comparison among scaling approaches
as performed by DRBF, using the average fitting error
ĒRMS. Although performance differences are not large,
using rf = 0.25 is found the best approach and is used for
comparison with DKG. The associated Mave is found 4.7%
smaller than the average over all scaling approaches. Non-
adaptive domain normalization (8) provides the slowest
convergence.

M5%, M2.5%, M1.25% and Mave for each test function
are presented in Fig. 6. A grey bar is used whenever the
required training set size exceeds the evaluations budget
as per Table 2, and therefore indicates that the specific
error level was not achieved. Both metamodels achieve
ERMS < 1.25% for test functions f1 (Branin-Hoo, 2D), f3

(Rosenbrock, 2D), f4 (Quartic, 2D), f6 (Rosenbrock, 3D),
f8 (Rosenbrock, 4D) and f9 (Styblinsky-Tang, 4D). Both
DRBF and DKG do not achieve errors < 2.5% for f5 (Shu-
bert, 2D). DRBF is not able to achieve errors < 1.25% for
f2 (Six-hump camelback, 2D) and errors < 2.5% for f7

(Hartman, 3D) whereas DKG does not achieve errors < 5%
forf10 (Hartman, 6D). Overall, DRBF shows a better per-
formance for f5 and f10, likely due to the trigonometric
and medium-dimensional transcendental nature of the func-
tions, whereas DKG performs better for test functions f1−4

and f6−9, providing mostly a sudden convergence. Table 6
shows the average performance of DRBF and DKG using
both sequential sampling and parallel infill. For I = 1
the metamodels provide similar performance in achieving
ĒRMS < 5%. DKG requires a smaller training set size for
achieving ĒRMS < 2.5% and 1.25%, and is found the best
method on average, as per Mave values. Using I = 1 and
parallel infill with I = 5 and 10 presents similar trends and
close results, revealing the high scalability of the approach
used. The relative increase in the number of evaluations
required with I = 5 and 10 compared to I = 1 is fairly
small.

5.2 Delft catamaran with stochastic speed

5.2.1 Fitting

Figure 7 shows the normalized fitting error E versus Fr.
Black diamonds indicate the training set {xi}Mi=1, with M =
33, using DRBF by Uave and Umax and DKG by Umax.
The error presents similar trends and is within ±1% for
all functions and methods. The error peaks are given by
DKG for f11 (close to 1%) and f12 (-1%). Generally, errors

Fig. 3 Stochastic-speed problem: output functions provided by URANS (Diez et al. 2014)
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Fig. 4 Stochastic-wave problem: output functions provided by URANS (He et al. 2013)

are larger for f11 and f12, and very small for f13. Com-
paring Figure 7 with Figure 3 shows that DRBF training
points are mostly located where the average curvature is
greater; training points are found more evenly distributed
with DKG.

Figure 8 presents the fitting performance for each
function, comparing DRBF and DKG. DRBF sampling
by Uave and Umax gives the same results in terms of
M5%, M2.5%, M1.25% and Mave. Both metamodels achieve
ERMS < 1.25% for each function. DRBF shows equal
or better performance than DKG for M5% in f11, f12

and f13, and for M2.5% in f11 and f12. Overall, perfor-
mances do not differ by more than 2 function evalua-
tions. Table 6 shows the average fitting error ĒRMS over
all functions. Using sequential sampling (I = 1), meta-
models provide very close performances; Mave ≈ 6 for
both DRBF and DKG with a maximum difference of one
function evaluation. Since the number of function evalu-
ations needed to achieve the convergence is less than 7,
using the parallel infill with I = 5 and I = 10 is not
needed.

Table 7 shows a summary of the results with comparison
to earlier studies based on static metamodels, with M = 3,
5, 9, 17, 33 (Diez et al. 2014). Figure 9 (a) shows the

convergence of ĒRMS versus the training set size M . Aver-
age error and range of static approaches are shown by
diamonds and error bars. DRBF and DKG present sim-
ilar trends. Table 8 shows the percentile of the average
error provided by DRBF and DKG compared to other static
metamodels, for M = 3, 5, 9, 17 and 33. The error
difference with the best metamodel is also shown. Specif-
ically, DRBF is found the best metamodel for M = 33,
whereas DKG is found the best metamodel for M = 9;
for M = 17 the metamodels provide the same results. For
M ≥ 5 DRBF and DKG presents an error difference with
the best metamodel always less than 1.65%. The best static
metamodel is, on average, LS-SVM with IMQ kernel and
α = 5.

5.2.2 Uncertainty quantification

Figure 10 presents the UQ performance for each function
comparing DRBF and DKG. DRBF sampling by Uave and
Umax gives the same results in terms of M5%, M2.5%, M1.25%

and Mave. DRBF is the most effective in achieving EUQ <

5% for f11, providing M5%, M2.5%, M1.25% equal to 4, 6 and
7, whereas DKG shows a sudden convergence with M5%,
M2.5%, M1.25% equal to 5. Both DRBF and DKG have a

Fig. 5 Convergence of the
Monte Carlo method in (39) (a)
and (41) (b) for test function f1
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Table 5 DRBF relaxation factor studies for adaptive scaling

Problem
Error Multiple-resp.

Metric
rf Non-adapt.

assessed approach 0 0.25 0.50 0.75 1 scaling

Test functions ĒRMS n.a.

M5% 106.3 90.9 90.1 89.4 106.1 107.1

M2.5% 156.6 147.4 153.1 159.2 151.7 162.1

M1.25% 185.8 178.3 180.1 184 184.3 191.0

Mave 149.6 138.9 141.1 144.2 147.4 153.4

Stochastic-wave

ĒRMS

Uave

M5% 27 33 23 27 28 59

M2.5% 46 48 44 44 - -

M1.25% - - - - - -

Mave 46.0 48.7 44.0 45.3 52.7 63.0

Umax

M5% 34 40 38 36 29 54

M2.5% 41 49 44 53 56 -

M1.25% - - - - - -

Mave 46.7 51.3 49.0 51.3 50.0 61.3

ĒUQ

Uave

M5% 23 19 23 24 28 22

M2.5% 43 35 43 27 44 51

M1.25% 60 42 50 - - -

Mave 42.0 32.0 38.7 38.7 45.7 46.0

Umax

M5% 24 21 17 27 28 24

M2.5% 34 40 42 49 46 38

M1.25% 50 49 58 62 - -

Mave 36.0 36.7 39.0 46.0 46.3 42.3

sudden convergence for f12 and f13, with DRBF perform-
ing better for f12 and DKG for f13. Table 6 shows the
average UQ error, ĒUQ, over all functions. Using sequen-
tial sampling (I = 1) DRBF needs 4, 5 and 7 evaluations
to achieve average errors < 5%, 2.5% and 1.25%, respec-
tively. DKG reveals a sudden convergence, showing M5%,
M2.5%, M1.25% equal to 5. Overall performance by Mave are
very close for DRBF and DKG. Since the number of func-
tion evaluations needed to achieve the convergence is less
than 7, using the parallel infill with I = 5 and I = 10 is not
needed.

Finally, Table 7 shows a summary of the results with
comparison to static metamodels from Diez et al. (2014).

The convergence of the ĒUQ versus M is depicted in Fig. 9
(b). Average error and range of static approaches are shown
by diamonds and error bars. DRBF and DKG present similar
trends. Generally, errors are small and few evaluations (< 7)
are required to achieve errors < 1.25%. Table 8 shows error
percentiles and differences with the best metamodel. Specif-
ically, DRBF is found the best metamodel for M = 9 and
17, whereas DKG is found the best metamodel for M = 33.
For M ≥ 9 DRBF presents an error difference with the best
metamodel always less or equal to 0.04%. For M ≥ 5 the
error difference of DKG with the best metamodel is always
less or equal to 0.04%. The best static metamodel is, on
average, LS-SVM with MQ kernel and α = 5.
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Fig. 6 Test functions: performance of DRBF and DKG for each function
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Table 6 Overall performance summary

Problem
Error

Metric rf
I = 1 I = 5 I = 10

assessed DRBF DKG DRBF DKG DRBF DKG

Test functions ĒRMS

M5%

0.25

91 96 100 95 112 99

M2.5% 147 105 152 109 156 115

M1.25% 178 116 181 119 176 123

Mave 138.6 105.6 144.6 107.5 147.8 112.5

Stochastic-speed

ĒRMS

M5% 5 6 8 8 13 13

M2.5% 5 6 8 8 13 13

M1.25% 7 6 13 8 13 13

Mave n.a.
5.7 6.0 9.7 8.0 13. 13.

ĒUQ

M5% 4 5 8 8 13 13

M2.5% 5 5 8 8 13 13

M1.25% 7 5 13 8 13 13

Mave 5.3 5.0 9.7 8.0 13. 13.

Stochastic-wave

ĒRMS

M5% 23 28 35 35 35 35

M2.5% 0.5 44 54 45 - 55 -

M1.25% (Uave) - - - - - -

Mave 44. 49. 48. 55. 52. 55.

ĒUQ

M5% 19 28 20 45 25 25

M2.5% 0.25 35 51 45 45 45 -

M1.25% (Uave) 42 61 50 - 55 -

Mave 32. 47. 38. 52. 42. 52.

5.3 Delft catamaran with stochastic regular wave

5.3.1 Fitting

Figures 11, 12 and 13 show the normalized fitting error E,
as a function of T and H for each function, using DRBF
by Uave and Umax and DKG by Umax. Black diamonds indi-
cate the training points used, with M = 65. Normalized
errors are found greater than in the stochastic speed case and

range from -15 to 15%. Errors are generally found larger
for DKG than DRBF, especially for f14 and f19. Comparing
Fig. 4 with Figs. 11, 12 and 13 shows that training points
for DRBF are located in those regions where the curva-
ture is higher, whereas they are more uniformly distributed
using DKG. DRBF training points by Uave and Umax present
similar trends.

Table 5 shows a comparison among scaling approaches
as performed by DRBF, using the average fitting error

Fig. 7 Stochastic-speed problem: DRBF and DKG normalized errors, E%
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Fig. 8 Stochastic-speed problem: fitting performance of DRBF and
DKG for each function

ĒRMS. Both Uave and Umax approaches for multiple-
response sampling are presented. Sampling by Uave

with rf = 0.5 is identified as the best overall
approach and is used for comparison with DKG. Asso-
ciated Mave is found 13.3% smaller than the overall
average.

Figure 14 presents ERMS for each function, comparing
DRBF and DKG. DRBF is found the most effective meta-
model for f14, f15, f18 and f19, whereas DRBF and DKG
are comparable for f16 and f17. Table 6 shows the average
fitting performance over all functions, in terms of ĒRMS.
Using sequential sampling (I = 1) both DRBF and DKG
do not achieve an error lower than 1.25%; overall, DRBF
is found performing better than DKG requiring on aver-
age five evaluations less than DKG. Using sequential and
parallel infill with I = 5 and 10 presents similar trends,
with an increase in the number of evaluations required by
the parallel infill with I = 5 and I = 10, compared
to I = 1.

Table 9 shows a summary of present results with com-
parison to static metamodels used in earlier research, with
M = 9, 17, 33, 65 (He et al. 2013). Fig. 15 (a) shows
the convergence of ĒRMS versus M for DRBF and DKG,
with comparison to static metamodels. Average error and
range of static approaches are shown by diamonds and
error bars. DRBF and DKG outperform static metamodels
for M > 33. Table 8 shows the percentile of the aver-
age error provided by DRBF and DKG compared to other

Table 7 Summary of results for stochastic-speed (average errors are given in %)

Techniques

ERMS EUQ

M M

3 5 9 17 33 Average 3 5 9 17 33 Average

Static

IDW (k =2) 13.3 5.73 3.95 2.92 1.91 5.56 10.4 5.9 3.96 4.02 3.08 5.46

IDW (k =4) 15.5 7.84 4.31 2.39 1.25 6.26 16.5 6.22 2.00 0.66 0.34 5.15

IDW (k =5) 17.1 9.09 5.02 2.78 1.41 7.09 16.8 7.56 2.44 0.81 0.29 5.57

RBF (MQ, α =10) 7.47 0.64 1.23 1.74 1.18 2.45 7.59 0.73 0.73 2.41 0.97 2.48

RBF (MQ, α =100) 12.8 4.74 2.24 1.01 0.47 4.25 9.55 6.22 3.52 2.18 0.34 4.36

RBF (MQ, α =1000) 11.8 3.45 1.17 0.45 0.24 3.42 7.12 3.57 2.09 0.29 0.15 2.64

RBF (IMQ, α =5) 6.77 0.61 0.87 4.78 4.86 3.58 6.56 0.50 0.66 4.16 3.04 2.98

RBF (IMQ, α =10) 7.51 0.94 1.27 5.84 2.69 3.65 6.96 0.64 0.85 4.64 1.98 3.01

RBF (IMQ, α =15) 8.87 1.59 0.97 18.1 1.36 6.18 7.26 1.04 0.72 18.0 1.13 5.62

PHS (k =1) 11.6 3.33 1.07 0.41 0.21 3.33 6.98 3.44 0.83 0.20 0.15 2.32

PHS (k =2) 11.4 3.76 1.46 0.49 0.23 3.46 9.65 5.32 2.58 0.42 0.14 3.62

PHS (k =3) 76.1 17.7 4.26 1.30 0.38 19.9 43.9 12.3 7.35 2.48 0.35 13.3

LS-SVM (MQ, α =10) 6.84 9.23 0.64 0.44 0.56 3.54 6.44 7.41 0.30 0.30 0.37 2.96

LS-SVM (MQ, α =100) 10.2 2.91 1.10 0.44 0.50 3.04 6.95 3.09 2.05 0.30 0.22 2.52

LS-SVM (MQ, α =1000) 11.5 3.24 1.04 0.39 0.20 3.26 6.88 3.36 0.78 0.19 0.10 2.26

LS-SVM (IMQ, α =5) 6.95 1.48 0.88 0.63 0.52 2.09 6.62 1.95 0.67 0.52 0.51 2.05

LS-SVM (IMQ, α =10) 8.49 1.56 0.67 0.39 0.32 2.29 8.32 2.62 0.64 0.20 0.21 2.39

LS-SVM (IMQ, α =15) 9.52 2.58 1.01 0.38 0.25 2.75 8.76 3.62 1.00 0.27 0.16 2.76

Dynamic

DRBF 13.6 2.03 0.36 0.27 0.17 3.28 11.1 2.43 0.23 0.17 0.13 2.80

DKG 13.0 2.24 0.35 0.27 0.18 3.21 17.5 0.60 0.27 0.21 0.09 3.74
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Fig. 9 Stochastic-speed problem: convergence of average fitting (a) and UQ (b) errors comparing dynamic and static metamodels

Table 8 Comparison of DRBF and DKG performance with static metamodels (P % refers to the percentile)

M

DRBF DKG

ERMS EUQ ERMS EUQ

P (%) E − Ebest P (%) E − Ebest P (%) E − Ebest P (%) E − Ebest

Stochastic-speed

3 15.8 6.83 21.1 4.62 21.1 6.25 5.26 11.1

5 68.4 1.42 68.4 1.93 63.2 1.63 94.7 0.04

9 94.7 0.01 100 0.00 100 0.00 78.9 0.04

17 100 0.00 100 0.00 100 0.00 94.7 0.04

33 100 0.00 89.5 0.04 94.7 0.01 100 0.00

Stochastic-wave

9 10.3 4.17 24.1 4.85 3.44 7.47 20.7 5.19

17 31.0 1.22 20.7 3.92 0.00 13.0 0.00 15.8

33 79.3 0.75 82.8 0.33 31.0 1.03 72.4 1.05

65 100 0.00 100 0.00 96.6 0.62 96.6 0.31
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Fig. 10 Stochastic-speed problem: performance of DRBF and DKG
for each function

static metamodels, for M = 9, 17, 33 and 65, also provid-
ing error difference with the best metamodel. Specifically,
DRBF is found the best metamodel for M = 65. For
M ≥ 33 dynamic metamodels present an error difference
with the best metamodel always less than 0.75%. The best
static metamodel is, on average, LS-SVM with MQ kernel
and α = 1.

5.3.2 Uncertainty quantification

Table 5 shows a comparison among scaling approaches as
performed by DRBF, using the average UQ error ĒUQ.
Both Uave and Umax approaches for multiple-response sam-
pling are presented. Sampling by Uave with rf = 0.25 is
identified as the overall best approach and is used for com-
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Fig. 11 Stochastic-wave problem: DRBF (Uave) normalized error, E%

Fig. 12 Stochastic-wave problem: DRBF (Umax) normalized error, E%

Fig. 13 Stochastic-wave problem: DKG (Umax) normalized error, E%

parison with DKG. The associated Mave is found 21.5%
smaller than the overall average over different scaling
approaches.

Figure 16 presents results for each function. The
most effective performance with DRBF is found for f14

and f15; DKG provides the best performance for f17.



Dynamic metamodel based on stochastic radial basis functions 363

Fig. 14 Stochastic-wave
problem: fitting performance of
DRBF and DKG for each
function

Table 6 shows the average UQ error, ĒUQ, over all
functions. Using sequential sampling (I = 1) DRBF
and DKG present similar trends achieving ĒUQ <

1.25%; overall, DRBF is found more efficient than DKG

requiring on average 14 functions evaluations less than
DKG. Using sequential and parallel infill with I = 5
and 10, DRBF provides similar trends. DKG is found
quite affected by parallel infill, showing different perfor-

Table 9 Summary of results for stochastic-wave (average errors are given in %)

Techniques

ERMS EUQ

M M

9 17 33 65 Average 9 17 33 65 Average

Static

IDW (k =2) 14.0 12.1 11.3 8.96 11.6 17.9 16.4 13.7 7.37 13.8

IDW (k =4) 13.4 10.1 8.43 5.77 9.42 11.7 6.89 4.92 2.12 6.40

IDW (k =6) 14.1 10.5 8.91 6.44 9.97 9.88 6.22 3.87 1.78 5.44

RBF (MQ, α =1) 11.3 7.28 3.99 2.78 6.33 10.3 5.95 2.23 1.54 5.01

RBF (MQ, α =10) 11.5 7.39 4.51 2.99 6.58 12.1 5.51 4.05 1.20 5.71

RBF (MQ, α =100) 11.5 7.49 4.67 3.12 6.70 12.5 5.79 4.29 1.37 5.98

RBF (IMQ, α =0.75) 11.4 8.14 4.43 2.73 7.67 14.0 8.37 4.15 1.34 6.96

RBF (IMQ, α =1.0) 17.7 9.84 5.33 2.86 8.94 16.7 10.5 5.21 2.30 8.66

RBF (IMQ, α =1.25) 20.1 11.6 6.42 3.26 10.4 19.1 12.3 6.19 2.83 10.1

PHS (k =1) 11.6 7.50 4.69 3.14 6.72 12.5 5.82 4.32 1.37 6.01

PHS (k =2) 14.5 7.46 4.13 2.89 7.24 13.2 6.20 2.33 1.28 5.74

PHS (k =3) 18.4 8.43 4.45 2.95 8.55 16.0 6.80 3.34 1.29 6.85

LS-SVM (MQ, α =1) 11.3 7.06 3.96 2.82 6.28 10.1 5.73 2.25 1.43 4.88

LS-SVM (MQ, α =10) 11.3 7.10 4.40 2.93 6.42 12.2 5.41 3.04 1.19 5.46

LS-SVM (MQ, α =100) 11.3 7.19 4.56 3.06 6.54 12.5 5.73 4.19 1.30 5.94

LS-SVM (IMQ, α =0.75) 12.4 7.46 4.19 2.57 6.66 13.1 6.71 3.25 1.31 6.09

LS-SVM (IMQ, α =1.0) 13.1 7.99 4.67 2.62 7.09 14.5 8.48 4.05 1.17 7.06

LS-SVM (IMQ, α =1.25) 13.7 8.64 5.24 2.82 7.60 15.9 10.5 6.08 1.30 8.46

OKG (lin., α =0.25) 11.3 7.20 4.58 3.08 6.55 12. 6 5.75 4.23 1.32 5.96

OKG (lin., α =0.5) 11.3 7.20 4.58 3.08 6.55 12. 6 5.75 4.23 1.32 5.96

OKG (lin., α =1.0) 11.3 7.20 4.58 3.08 6.55 12. 6 5.75 4.23 1.32 5.96

OKG (exp., α =0.25) 11.4 7.20 4.60 3.08 6.56 12.7 5.82 4.26 1.30 6.02

OKG (exp., α =0.5) 11.4 7.20 4.61 3.07 6.57 12.8 5.84 4.27 1.29 6.05

OKG (exp., α =1.0) 11.5 7.20 4.65 3.07 6.60 13.0 6.00 4.37 1.30 6.16

SRBF (P) 11.4 7.30 4.18 2.90 6.45 10.4 5.10 2.43 1.14 4.75

SRBF (MQ) 11.5 7.45 4.60 3.07 6.65 12.3 5.69 4.21 1.29 5.88

SRBF (IMQ) 17.7 9.80 5.33 2.86 8.93 16.6 10.4 5.18 2.31 8.63

DKG 12.9 6.95 3.63 2.29 6.44 10.9 5.90 2.51 1.26 5.15

Dynamic

DRBF 15.4 8.17 4.38 1.45 7.35 14.7 9.02 2.56 0.78 6.77

DKG 18.7 19.9 4.66 2.07 11.4 15.1 20.9 3.28 1.09 10.1
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Fig. 15 Stochastic-wave problem: convergence of average fitting (a) and UQ (b) errors comparing dynamic and static metamodels

mance trends, varying I . Overall efficiency decreases as
I increases.

Table 9 shows a summary of the present results with
comparison to static metamodels (He et al. 2013). Fig. 15
(b) shows the convergence of ĒUQ versus M for DRBF
and DKG, with comparison to static metamodels. Average
errors using static approaches are shown using a diamond,
whereas an error bar indicates their range. Table 8 shows
the percentile of average error provided by DRBF and DKG
compared to other static metamodels and the error differ-
ence with the best metamodel. DRBF is found the best
metamodel for M = 33. For M ≥ 33 DRBF presents
an error difference with the best metmodel always less
or equal to 0.3%. For M ≥ 33 the error difference of
DKG with the best metamodel is always less or equal to
1%. The best static metamodel is, on average, SRBF with
P kernel.

6 Conclusions and future work

A dynamic metamodel based on stochastic RBF has
been derived and validated by comparison with an exist-
ing DKG method and static metamodels used in ear-
lier research. A metric for the evaluation of the effi-
ciency of the metamodels has been introduced and applied

to both deterministic test functions (with dimensional-
ity ranging from two to six) and ship hydrodynamics
UQ problems with analytical and numerical benchmarks,
respectively.

Assessing test functions fitting, DRBF is found the
most effective for trigonometric and medium dimensional
functions, whereas DKG has the best fitting capabil-
ity when applied to polynomial and low dimensional
functions. Overall, average number of training points
required, Mave, equals 139 for DRBF and 106 for DKG
(Table 6).

Assessment of Delft catamaran performance (total
resistance, sinkage and trim) in calm water with stochas-
tic speed reveals that multiple response criterion has no
significant effect on DRBF. Relatively few training points
are needed by DRBF and DKG for getting small fitting
errors. Specifically, Mave for average fitting error ĒRMS

equals 5.66 using DRBF and 6 using DKG (Table 6).
Comparing to static metamodels used in earlier research,
dynamic approaches are found the most accurate for M ≥
9 (Tables 7 and 8). Best static approach has been found
on average LS-SVM with IMQ kernel. Also for UQ
analyses, DRBF and DKG need few training points to
achieve fairly good accuracy. Specifically, Mave for aver-
age uncertainty-quantification error ĒUQ equals 5.33 using
DRBF and 5 using DKG (Table 6). Comparing to static

Fig. 16 Stochastic-wave problem: performance of DRBF and DKG for each function
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metamodels, dynamic approaches are found the most accu-
rate for M ≥ 9 (Tables 7 and 8). LS-SVM with IMQ
kernel has been identified as the best static approach
on average.

Assessment of Delft catamaran performances (time mean
and RMS of x-force, heave and pitch motions) in stochas-
tic regular wave shows that DRBF has the most effective
performances using multiple response criterion Uave. Both
DRBF and DKG have fairly good fitting performance,
compared to static metamodels. Specifically, DRBF shows
Mave = 44 for average fitting error ĒRMS whereas Mave =
49 using DKG (Table 6.) Comparing to static metamodels,
the error difference between dynamic and best metamodels
is always less or equal than 0.75% for M ≥ 33 (Tables 8
and 9). DRBF is found the best metamodel for M = 65.
Best static approach has been found on average LS-SVM
with MQ kernel. DRBF is found more efficient than DKG
for UQ analyses. Both metamodels perform well, com-
pared to static metamodels. Specifically, DRBF presents
Mave = 32 for average uncertainty-quantification error
ĒUQ, whereas Mave = 46.7 using DKG (Table 6). Com-
paring to static metamodels, the error difference between
dynamic and best metamodels is always less or equal than
1.05% for M ≥ 33 (Tables 8 and 9). DRBF is found the
most accurate overall for M = 65. Best static approach has
been found on average SRBF with P kernel.

Overall, training points for DRBF are located in high-
curvature regions, whereas they are more uniformly dis-
tributed using DKG. Since DRBF locates training points
where the uncertainty is larger, current results indicate that
the metamodel stochastic uncertainty is larger in high-
curvature regions. Generally, accuracy of metamodel pre-
diction in high-curvature regions is difficult to achieve and
many training points are required. Thus, the metamodel
stochastic uncertainty is an effective metric for adaptive
sampling. DKG fills more uniformly the domain, which
is reasonable since prediction MSE by (31) depends on
training-points distribution.

In conclusion, the introduction of a metric based on the
number of evaluations required has allowed for a straight-
forward assessment of metamodels efficiency, which is
of primarily interest when high-fidelity solvers are used.
DRBF has been found with a greater efficiency for fitting
trigonometric and medium-dimensional functions and two-
dimensional UQ. The use of an adaptive scaling with rf
ranging from 0 to 0.5 has been found efficient compared
to a non-adaptive scaling approach; however, the optimal
value of rf is problem dependent. DKG is found more effec-
tive for fitting polynomial and low-dimensional functions
and one-dimensional UQ. In general, as the training set
size increases, dynamic approaches are found more efficient
than static metamodels used in earlier research. In addi-
tion, comparison of fitting with uncertainty-quantification

errors reveals similar trends. Fitting errors have been found
generally larger than those found in uncertainty quantifi-
cation. Errors for stochastic wave problem (2D) have been
found nearly twice than those for stochastic speed prob-
lem (1D). Finally, the use of parallel infill with groups
of 5 and 10 training points is found affordable, showing
an acceptable loss of efficiency compared to the gain in
wall-clock time.

Future research includes the use of multiple kernels
and their automatic selection in order to auto-configure
the DRBF network, and the application of DRBF and
DKG to design optimization problems in ship hydrody-
namics, including deterministic and stochastic applications
with global and local optimization algorithms. The pos-
sibility to extend current adaptive sampling approaches,
based on maximum uncertainty or MSE, to integral met-
rics will be addressed in future studies. Applicability of
present methodology to large problems (with a number of
independent variables greater than 10) will also be inves-
tigated in future work. Comparison with Bayesian Kriging
methods is of interest and will be evaluated in the future.
In addition, model tests campaign to collect experimental
benchmark values for UQ for Delft catamaran in wave is in
progress.
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Appendix A: Uncertainty quantification

UQ studies assess the effects of uncertain parameters ξ

with probability density function φ(ξ) on the relevant out-
puts f , quantifying EV, SD, CDF and 95%-confidence
band of CDF, herein called output stochastic uncertainty
Uf , as:

EV(f ) =
∫

(ξ)φ(ξ)dξ (35)

SD(f ) =
√∫

[f (ξ) − EV (f )]2φ(ξ)dξ (36)

CDF(y) =
∫

H [y − f (ξ)]φ(ξ)dξ (37)

Uf = CDF−1(0.975) − CDF−1(0.025) (38)
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H(·) is the Heaviside step function. Using the Monte Carlo
(MC) method with {ξi}Ni=1 ∼ φ, (35-37) are solved respec-
tively by

EV(f ) = 1

N

N∑

i=1

f (ξi) (39)

SD(f ) =
√√√√ 1

N − 1

N∑

i=1

[
f (ξi) − EV

]2
(40)

CDF(y) = 1

N

N∑

i=1

H
[
y − f (ξi)

]
(41)

Appendix B: Analytical formulation of test functions

This appendix provides the analytical formulation used for
the test functions.

Branin-Hoo function (2D)

f1(x) =
(

x2 − 5.1

4π2 x2
1 + 5

π
x1 − 6

)2

+ 10

(
1 − 1

8π

)
cosx1 + 10 (42)

Six-hump camelback function (2D)

f2(x) =
(

4 − 2.1x2
1 + 1

3
x4

1

)
x2

1 + x1x2 +
(

4x2
2 − 4

)
x2

2

(43)

Rosenbrock function (2D)

f3(x) = (1 − x1)
2 + 100

(
x2 − x2

1

)2
(44)

Quartic function (2D)

f4(x) = x4
1

4
− x2

1

2
+ x1

10
+ x2

2

2
(45)

Shubert function (2D)

f5(x) =
{

5∑

i=1

icos [(i + 1)x1 + i]

}{
5∑

i=1

icos [(i + 1)x2 + i]

}

(46)

Extended Rosenbrock function (3D)

f6(x) =
2∑

i=1

[
(1 − xi)

2 + 100(xi+1 − x2
i )2

]
(47)

Hartman function (3D)

f7(x) = −
4∑

i=1

aiexp

⎧
⎨

⎩−
3∑

j=1

bij (xj − dij )
2

⎫
⎬

⎭ (48)

with

a =

⎧
⎪⎪⎨

⎪⎪⎩

1.0
1.2
3.0
3.2

⎫
⎪⎪⎬

⎪⎪⎭
b =

⎧
⎪⎪⎨

⎪⎪⎩

3.0 10.0 30.0
0.1 10.0 35.0
3.0 10.0 30.0
0.1 10.0 35.0

⎫
⎪⎪⎬

⎪⎪⎭
d =

⎧
⎪⎪⎨

⎪⎪⎩

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

⎫
⎪⎪⎬

⎪⎪⎭

(49)

Extended Rosenbrock function (4D)

f8(x) =
3∑

i=1

[
(1 − xi)

2 + 100(xi+1 − x2
i )2

]
(50)

Styblinski-Tang function (4D)

f9(x) =
∑4

i=1 x4
i − 16x2

i + 5xi

2
(51)

Hartman function (6D)

f10(x) = −
4∑

i=1

aiexp

⎧
⎨

⎩−
6∑

j=1

bij (xj − dij )
2

⎫
⎬

⎭ (52)

with

a =

⎧
⎪⎨

⎪⎩

1.0
1.2
3.0
3.2

⎫
⎪⎬

⎪⎭
b =

⎧
⎪⎨

⎪⎩

10.0 3.0 17.0 3.5 1.7 8.0
0.05 10.0 17.0 0.1 8.0 14.0
3.0 3.5 1.7 10.0 17.0 8.0
17.0 8.0 0.05 10.0 0.1 14.0

⎫
⎪⎬

⎪⎭
(53)

d =

⎧
⎪⎪⎨

⎪⎪⎩

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

⎫
⎪⎪⎬

⎪⎪⎭
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