2,790 research outputs found

    Statistical mechanics and dynamics of solvable models with long-range interactions

    Get PDF
    The two-body potential of systems with long-range interactions decays at large distances as V(r)∌1/rαV(r)\sim 1/r^\alpha, with α≀d\alpha\leq d, where dd is the space dimension. Examples are: gravitational systems, two-dimensional hydrodynamics, two-dimensional elasticity, charged and dipolar systems. Although such systems can be made extensive, they are intrinsically non additive. Moreover, the space of accessible macroscopic thermodynamic parameters might be non convex. The violation of these two basic properties is at the origin of ensemble inequivalence, which implies that specific heat can be negative in the microcanonical ensemble and temperature jumps can appear at microcanonical first order phase transitions. The lack of convexity implies that ergodicity may be generically broken. We present here a comprehensive review of the recent advances on the statistical mechanics and out-of-equilibrium dynamics of systems with long-range interactions. The core of the review consists in the detailed presentation of the concept of ensemble inequivalence, as exemplified by the exact solution, in the microcanonical and canonical ensembles, of mean-field type models. Relaxation towards thermodynamic equilibrium can be extremely slow and quasi-stationary states may be present. The understanding of such unusual relaxation process is obtained by the introduction of an appropriate kinetic theory based on the Vlasov equation.Comment: 118 pages, review paper, added references, slight change of conten

    Religious Spanish Folk-Drama in New Mexico

    Get PDF

    The Cell of Heavenly Justice

    Get PDF

    Manana Is Today

    Get PDF

    Ternary and quaternary oxides of Bi, Sr, and Cu

    Get PDF
    Before the discovery of superconductivity in an oxide of Bi, Sr, and Cu, the system Bi-Sr-Cu-O had not been studied, although several solid phases had been identified in the two-component regions of the ternary system Bi2O3-SrO-CuO. The oxides Sr2CuO3, SrCu2O2, SrCuO2, and Bi2CuO4 were then well known and characterized, and the phase diagram of the binary system Bi2O3 -SrO had been established in the temperature range 620 to 1000 C. Besides nine solutions of compositions Bi(2-2x) Sr(x) O(3-2x) and different symmetries, this diagram includes three definite compounds of stoichiometries Bi(2)SrO4, Bi2Sr2O5, and Bi2Sr3O6 (x = 0.50, 0.67 and 0.75 respectively), only the second of which with known unit-cell of orthorhombic symmetry, dimensions (A) a = 14.293(2), b = 7.651(2), c = 6.172(1), and z = 4. The first superconducting oxide in the system Bi-Sr-Cu-O was initially formulated as Bi2Sr2Cu2O(7+x), with an orthorhombic unit-cell of parameters (A) a = 5.32, b = 26.6, c = 48.8. In a preliminary study the same oxide was formulated with half the copper content, Bi(2)Sr(2)CuO(6+x), and indexed its reflections assuming an orthorhombic unit-cell of dimensions (A) a = 5.390(2), b = 26.973(8), c = 24.69(4). Subsequent studies by diffraction techniques have confirmed the composition 2:2:1. A new family of oxygen-deficient perovskites, was characterized, after identifying by x ray diffraction the phases present in the products of thermal treatments of about 150 mixtures of analytical grade Bi2O3, Sr(OH)2-8H2O and CuO at different molar ratios. X ray diffraction data are presented for some other oxides of Bi and Sr, as well as for various quaternary oxides, among them an oxide of Bi, Sr, and Cu

    Microcanonical Analysis of Exactness of the Mean-Field Theory in Long-Range Interacting Systems

    Full text link
    Classical spin systems with nonadditive long-range interactions are studied in the microcanonical ensemble. It is expected that the entropy of such a system is identical to that of the corresponding mean-field model, which is called "exactness of the mean-field theory". It is found out that this expectation is not necessarily true if the microcanonical ensemble is not equivalent to the canonical ensemble in the mean-field model. Moreover, necessary and sufficient conditions for exactness of the mean-field theory are obtained. These conditions are investigated for two concrete models, the \alpha-Potts model with annealed vacancies and the \alpha-Potts model with invisible states.Comment: 23 pages, to appear in J. Stat. Phy

    Enhancement of magnetic anisotropy barrier in long range interacting spin systems

    Full text link
    Magnetic materials are usually characterized by anisotropy energy barriers which dictate the time scale of the magnetization decay and consequently the magnetic stability of the sample. Here we present a unified description, which includes coherent rotation and nucleation, for the magnetization decay in generic anisotropic spin systems. In particular, we show that, in presence of long range exchange interaction, the anisotropy energy barrier grows as the volume of the particle for on site anisotropy, while it grows even faster than the volume for exchange anisotropy, with an anisotropy energy barrier proportional to V2−α/dV^{2-\alpha/d}, where VV is the particle volume, α≀d\alpha \leq d is the range of interaction and dd is the embedding dimension. These results shows a relevant enhancement of the anisotropy energy barrier w.r.t. the short range case, where the anisotropy energy barrier grows as the particle cross sectional area for large particle size or large particle aspect ratio.Comment: 7 pages, 6 figures. Theory of Magnetic decay in nanosystem. Non equilibrium statistical mechanics of many body system

    1-d gravity in infinite point distributions

    Full text link
    The dynamics of infinite, asymptotically uniform, distributions of self-gravitating particles in one spatial dimension provides a simple toy model for the analogous three dimensional problem. We focus here on a limitation of such models as treated so far in the literature: the force, as it has been specified, is well defined in infinite point distributions only if there is a centre of symmetry (i.e. the definition requires explicitly the breaking of statistical translational invariance). The problem arises because naive background subtraction (due to expansion, or by "Jeans' swindle" for the static case), applied as in three dimensions, leaves an unregulated contribution to the force due to surface mass fluctuations. Following a discussion by Kiessling, we show that the problem may be resolved by defining the force in infinite point distributions as the limit of an exponentially screened pair interaction. We show that this prescription gives a well defined (finite) force acting on particles in a class of perturbed infinite lattices, which are the point processes relevant to cosmological N-body simulations. For identical particles the dynamics of the simplest toy model is equivalent to that of an infinite set of points with inverted harmonic oscillator potentials which bounce elastically when they collide. We discuss previous results in the literature, and present new results for the specific case of this simplest (static) model starting from "shuffled lattice" initial conditions. These show qualitative properties (notably its "self-similarity") of the evolution very similar to those in the analogous simulations in three dimensions, which in turn resemble those in the expanding universe.Comment: 20 pages, 8 figures, small changes (section II shortened, added discussion in section IV), matches final version to appear in PR

    Dynamical stability criterion for inhomogeneous quasi-stationary states in long-range systems

    Full text link
    We derive a necessary and sufficient condition of linear dynamical stability for inhomogeneous Vlasov stationary states of the Hamiltonian Mean Field (HMF) model. The condition is expressed by an explicit disequality that has to be satisfied by the stationary state, and it generalizes the known disequality for homogeneous stationary states. In addition, we derive analogous disequalities that express necessary and sufficient conditions of formal stability for the stationary states. Their usefulness, from the point of view of linear dynamical stability, is that they are simpler, although they provide only sufficient criteria of linear stability. We show that for homogeneous stationary states the relations become equal, and therefore linear dynamical stability and formal stability become equivalent.Comment: Submitted to Journal of Statistical Mechanics: Theory and Experimen
    • 

    corecore