Magnetic materials are usually characterized by anisotropy energy barriers
which dictate the time scale of the magnetization decay and consequently the
magnetic stability of the sample. Here we present a unified description, which
includes coherent rotation and nucleation, for the magnetization decay in
generic anisotropic spin systems. In particular, we show that, in presence of
long range exchange interaction, the anisotropy energy barrier grows as the
volume of the particle for on site anisotropy, while it grows even faster than
the volume for exchange anisotropy, with an anisotropy energy barrier
proportional to V2−α/d, where V is the particle volume, α≤d is the range of interaction and d is the embedding dimension. These
results shows a relevant enhancement of the anisotropy energy barrier w.r.t.
the short range case, where the anisotropy energy barrier grows as the particle
cross sectional area for large particle size or large particle aspect ratio.Comment: 7 pages, 6 figures. Theory of Magnetic decay in nanosystem. Non
equilibrium statistical mechanics of many body system