87 research outputs found
Recommended from our members
New rRNA Gene-Based Phylogenies of the Alphaproteobacteria Provide Perspective on Major Groups, Mitochondrial Ancestry and Phylogenetic Instability
Bacteria in the class Alphaproteobacteria have a wide variety of lifestyles and physiologies. They include pathogens
of humans and livestock, agriculturally valuable strains, and several highly abundant marine groups. The ancestor of
mitochondria also originated in this clade. Despite significant effort to investigate the phylogeny of the
Alphaproteobacteria with a variety of methods, there remains considerable disparity in the placement of several
groups. Recent emphasis on phylogenies derived from multiple protein-coding genes remains contentious due to
disagreement over appropriate gene selection and the potential influences of systematic error. We revisited previous
investigations in this area using concatenated alignments of the small and large subunit (SSU and LSU) rRNA genes,
as we show here that these loci have much lower GC bias than whole genomes. This approach has allowed us to
update the canonical 16S rRNA gene tree of the Alphaproteobacteria with additional important taxa that were not
previously included, and with added resolution provided by concatenating the SSU and LSU genes. We investigated
the topological stability of the Alphaproteobacteria by varying alignment methods, rate models, taxon selection and
RY-recoding to circumvent GC content bias. We also introduce RYMK-recoding and show that it avoids some of the
information loss in RY-recoding. We demonstrate that the topology of the Alphaproteobacteria is sensitive to
inclusion of several groups of taxa, but it is less affected by the choice of alignment and rate methods. The majority of
topologies and comparative results from Approximately Unbiased tests provide support for positioning the
Rickettsiales and the mitochondrial branch within a clade. This composite clade is a sister group to the abundant
marine SAR11 clade (Pelagibacterales). Furthermore, we add support for taxonomic assignment of several recently
sequenced taxa. Accordingly, we propose three subclasses within the Alphaproteobacteria: the Caulobacteridae, the
Rickettsidae, and the Magnetococcidae
Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico "Dead Zone".
This is the final version of the article. Available from American Society for Microbiology via the DOI in this record.Marine regions that have seasonal to long-term low dissolved oxygen (DO) concentrations, sometimes called "dead zones," are increasing in number and severity around the globe with deleterious effects on ecology and economics. One of the largest of these coastal dead zones occurs on the continental shelf of the northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacterioplankton respiration and strong seasonal stratification. Previous research in this dead zone revealed the presence of multiple cosmopolitan bacterioplankton lineages that have eluded cultivation, and thus their metabolic roles in this ecosystem remain unknown. We used a coupled shotgun metagenomic and metatranscriptomic approach to determine the metabolic potential of Marine Group II Euryarchaeota, SAR406, and SAR202. We recovered multiple high-quality, nearly complete genomes from all three groups as well as candidate phyla usually associated with anoxic environments-Parcubacteria (OD1) and Peregrinibacteria Two additional groups with putative assignments to ACD39 and PAUC34f supplement the metabolic contributions by uncultivated taxa. Our results indicate active metabolism in all groups, including prevalent aerobic respiration, with concurrent expression of genes for nitrate reduction in SAR406 and SAR202, and dissimilatory nitrite reduction to ammonia and sulfur reduction by SAR406. We also report a variety of active heterotrophic carbon processing mechanisms, including degradation of complex carbohydrate compounds by SAR406, SAR202, ACD39, and PAUC34f. Together, these data help constrain the metabolic contributions from uncultivated groups in the nGOM during periods of low DO and suggest roles for these organisms in the breakdown of complex organic matter.IMPORTANCE Dead zones receive their name primarily from the reduction of eukaryotic macrobiota (demersal fish, shrimp, etc.) that are also key coastal fisheries. Excess nutrients contributed from anthropogenic activity such as fertilizer runoff result in algal blooms and therefore ample new carbon for aerobic microbial metabolism. Combined with strong stratification, microbial respiration reduces oxygen in shelf bottom waters to levels unfit for many animals (termed hypoxia). The nGOM shelf remains one of the largest eutrophication-driven hypoxic zones in the world, yet despite its potential as a model study system, the microbial metabolisms underlying and resulting from this phenomenon-many of which occur in bacterioplankton from poorly understood lineages-have received only preliminary study. Our work details the metabolic potential and gene expression activity for uncultivated lineages across several low DO sites in the nGOM, improving our understanding of the active biogeochemical cycling mediated by these "microbial dark matter" taxa during hypoxia
Recommended from our members
Streamlining and Core Genome Conservation among Highly Divergent Members of the SAR11 Clade
SAR11 is an ancient and diverse clade of heterotrophic bacteria that are abundant throughout the world's oceans, where they play a major role in the ocean carbon cycle. Correlations between the phylogenetic branching order and spatiotemporal patterns in cell distributions from planktonic ocean environments indicate that SAR11 has evolved into perhaps a dozen or more specialized ecotypes that span evolutionary distances equivalent to a bacterial order. We isolated and sequenced genomes from diverse SAR11 cultures that represent three major lineages and encompass the full breadth of the clade. The new data expand observations about genome evolution and gene content that previously had been restricted to the SAR11 Ia subclade, providing a much broader perspective on the clade's origins, evolution, and ecology. We found small genomes throughout the clade and a very high proportion of core genome genes (48 to 56%), indicating that small genome size is probably an ancestral characteristic. In their level of core genome conservation, the members of SAR11 are outliers, the most conserved free-living bacteria known. Shared features of the clade include low GC content, high gene synteny, a large hypervariable region bounded by rRNA genes, and low numbers of paralogs. Variation among the genomes included genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important to niche partitioning and ecotype divergence within the clade. These data provide support for the conclusion that streamlining selection for efficient cell replication in the planktonic habitat has occurred throughout the evolution and diversification of this clade.
IMPORTANCE The SAR11 clade is the most abundant group of marine microorganisms worldwide, making them key players in the global carbon cycle. Growing knowledge about their biochemistry and metabolism is leading to a more mechanistic understanding of organic carbon oxidation and sequestration in the oceans. The discovery of small genomes in SAR11 provided crucial support for the theory that streamlining selection can drive genome reduction in low-nutrient environments. Study of isolates in culture revealed atypical organic nutrient requirements that can be attributed to genome reduction, such as conditional auxotrophy for glycine and its precursors, a requirement for reduced sulfur compounds, and evidence for widespread cycling of C1 compounds in marine environments. However, understanding the genetic variation and distribution of such pathways and characteristics like streamlining throughout the group has required the isolation and genome sequencing of diverse SAR11 representatives, an analysis of which we provide here.Keywords: Ecotypes, Pan genome, Cyanobacterium prochlorococcus, Population genomics, Marine bacteria, Ocean, Size, Evolution, Sequence, Atlantic time seriesKeywords: Ecotypes, Pan genome, Cyanobacterium prochlorococcus, Population genomics, Marine bacteria, Ocean, Size, Evolution, Sequence, Atlantic time serie
Genome Sequencing of Polydrug-, Multidrug-, and Extensively Drug-Resistant Mycobacterium tuberculosis Strains from South India.
The genomes of 16 clinical Mycobacterium tuberculosis isolates were subjected to whole-genome sequencing to identify mutations related to resistance to one or more anti-Mycobacterium drugs. The sequence data will help in understanding the genomic characteristics of M. tuberculosis isolates and their resistance mutations prevalent in South India.This publication presents research supported by the MRC-DBT-funded partnership between the National Institute for Research in Tuberculosis, Chennai, India (Indian Council of Medical Research, New Delhi 5/2-8/LDCE/2014 for S.K., Department of Biotechnology [BT/IN/DBT-MRC (UK)/12/SS/2015-2016] for D.N., M.N., S.P.T., S.S., and U.D.R.) and the University of Cambridge (UK Medical Research Council [MR/N501864/1] for N.K. and S.P.)
Recommended from our members
Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype
Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%–86%, were isolated from 770 m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size.This is the publisher’s final pdf. The article is copyrighted by the International Society for Microbial Ecology and published by the Nature Publishing Group. It can be found at: http://www.nature.com/ismej/index.htm
Recommended from our members
Best Practices for Successfully Writing and Publishing a Genome Announcement in Microbiology Resource Announcements
Microbiology Resource Announcements (MRA) provides peer-reviewed announcements of scientific resources for the microbial research community. We describe the best practices for writing an announcement that ensures that these publications are truly useful resources. Adhering to these best practices can lead to successful publication without the need for extensive revisions
Lymphotoxin β Receptor (LtβR): Dual Roles in Demyelination and Remyelination and Successful Therapeutic Intervention Using LtβR-Ig Protein
Inflammation mediated by macrophages is increasingly found to play a central role in diseases and disorders that affect a myriad of organs, prominent among these are diseases of the CNS. The neurotoxicant-induced, cuprizone model of demyelination is ideally suited for the analysis of inflammatory events. Demyelination on exposure to cuprizone is accompanied by predictable microglial activation and astrogliosis, and, after cuprizone withdrawal, this activation reproducibly diminishes during remyelination. This study demonstrates enhanced expression of lymphotoxin beta receptor (Lt betaR) during the demyelination phase of this model, and Lt betaR is found in areas enriched with microglial and astroglial cells. Deletion of the Lt betaR gene (Lt betaR-/-) resulted in a significant delay in demyelination but also a slight delay in remyelination. Inhibition of Lt betaR signaling by an Lt betaR-Ig fusion decoy protein successfully delayed demyelination in wild-type mice. Unexpectedly, this Lt betaR-Ig decoy protein dramatically accelerated the rate of remyelination, even after the maximal pathological disease state had been reached. This strongly indicates the beneficial role of Lt betaR-Ig in the delay of demyelination and the acceleration of remyelination. The discrepancy between remyelination rates in these systems could be attributed to developmental abnormalities in the immune systems of Lt betaR-/- mice. These findings bode well for the use of an inhibitory Lt betaR-Ig as a candidate biological therapy in demyelinating disorders, because it is beneficial during both demyelination and remyelination
Recommended from our members
Proteomic and Transcriptomic Analyses of “Candidatus Pelagibacter ubique” Describe the First P[subscript II]-Independent Response to Nitrogen Limitation in a Free-Living Alphaproteobacterium
Nitrogen is one of the major nutrients limiting microbial productivity in the ocean, and as a result, most marine microorganisms
have evolved systems for responding to nitrogen stress. The highly abundant alphaproteobacterium “Candidatus
Pelagibacter ubique,” a cultured member of the order Pelagibacterales (SAR11), lacks the canonical GlnB, GlnD, GlnK, and
NtrB/NtrC genes for regulating nitrogen assimilation, raising questions about how these organisms respond to nitrogen limitation.
A survey of 266 Alphaproteobacteria genomes found these five regulatory genes nearly universally conserved, absent only in
intracellular parasites and members of the order Pelagibacterales, including “Ca. Pelagibacter ubique.” Global differences in
mRNA and protein expression between nitrogen-limited and nitrogen-replete cultures were measured to identify nitrogen stress
responses in “Ca. Pelagibacter ubique” strain HTCC1062. Transporters for ammonium (AmtB), taurine (TauA), amino acids
(YhdW), and opines (OccT) were all elevated in nitrogen-limited cells, indicating that they devote increased resources to the assimilation
of nitrogenous organic compounds. Enzymes for assimilating amine into glutamine (GlnA), glutamate (GltBD), and
glycine (AspC) were similarly upregulated. Differential regulation of the transcriptional regulator NtrX in the two-component
signaling system NtrY/NtrX was also observed, implicating it in control of the nitrogen starvation response. Comparisons of the
transcriptome and proteome supported previous observations of uncoupling between transcription and translation in nutrient-deprived
“Ca. Pelagibacter ubique” cells. Overall, these data reveal a streamlined, P[subscript II]-independent response to nitrogen stress in
“Ca. Pelagibacter ubique,” and likely other Pelagibacterales, and show that they respond to nitrogen stress by allocating more
resources to the assimilation of nitrogen-rich organic compounds.This is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by the American Society for Microbiology. The published article can be found at: http://mbio.asm.org/
Upregulation of the stress-associated gene p8 in mouse models of demyelination and in multiple sclerosis tissues
Cuprizone-induced demyelination is a mouse model of multiple sclerosis (MS) as cuprizone-fed mice exhibit neuroin-flammation and demyelination in the brain. Upon removal of cuprizone from the diet, inflammation is resolved and reparative remyelination occurs. In an Affymetrix Gene-Chip analysis, the stress-associated gene p8 was strongly upregulated (>10×) during cuprizone-induced demyelination but not remyelination. We verified this upregulation (>15×) of p8 in the CNS during demyelination by real-time polymerase chain reaction (PCR). This upregulation is brain-specific, as p8 is not elevated in the liver, lung, kidney, spleen, and heart of cuprizone-treated mice. We also localized the cellular source of p8 during cuprizone treatment, and further found elevated expression during embryogenesis but not in normal adult brain. Compared with wild-type controls, the death of oligodendrocytes in p8−/− mice is delayed, as is microglial recruitment to areas of demyelination. The corpus callosum of p8−/− mice demyelinates at a slower rate than wild-type mice, suggesting that p8 exacerbates CNS inflammation and demyelination. Enhanced expression of p8 is also observed in the spinal cords of mice with acute experimental autoimmune encephalomyelitis (EAE) induced by PLP139–151 peptide (10×). Increased expression is detected during disease onset and expression wanes during the remission phase. Finally, p8 is found upregulated (8×) in post-mortem tissue from MS patients and is higher in the plaque tissue compared with adjacent normal-appearing white and gray matter. Thus, p8 is an excellent candidate as a novel biomarker of demyelination
Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov. and Propionivibrio militaris, sp. nov.
Novel dissimilatory perchlorate-reducing bacteria (DPRB) were isolated from enrichments conducted under conditions different from those of all previously described DPRB. Strain LT-1T was enriched using medium buffered at pH 6.6 with 2-(N-morpholino)ethanesulfonic acid (MES) and had only 95% 16S rRNA gene identity with its closest relative, Azonexus caeni. Strain MPT was enriched in the cathodic chamber of a perchlorate-reducing bioelectrical reactor (BER) and together with an additional strain, CR (99% 16S rRNA gene identity), had 97% 16S rRNA gene identity with Propionivibrio limicola. The use of perchlorate and other electron acceptors distinguished strains MPT and CR from P. limicola physiologically. Strain LT-1T had differences in electron donor utilization and optimum growth temperatures from A. caeni. Strains LT-1T and MPT are the first DPRB to be described in the Betaproteobacteria outside of the Dechloromonas and Azospira genera. On the basis of phylogenetic and physiological features, strain LT-1T represents a novel genus in the Rhodocyclaceae; strain MPT represents a novel species within the genus Propionivibrio. The names Dechlorobacter hydrogenophilus gen. nov., sp. nov and Propionivibrio militaris sp. nov. are proposed
- …