22,568 research outputs found
Simulations Show that Vortex Flows could Heat the Chromosphere in Solar Plage
The relationship between vortex flows at different spatial scales and their
contribution to the energy balance in the chromosphere is not yet fully
understood. We perform three-dimensional (3D) radiation-magnetohydrodynamic
(MHD) simulations of a unipolar solar plage region at a spatial resolution of
10 km using the MURaM code. We use the swirling-strength criterion that mainly
detects the smallest vortices present in the simulation data. We additionally
degrade our simulation data to smooth-out the smaller vortices, so that also
the vortices at larger spatial scales can be detected. Vortex flows at various
spatial scales are found in our simulation data for different effective spatial
resolutions. We conclude that the observed large vortices are likely clusters
of much smaller ones that are not yet resolved by observations. We show that
the vertical Poynting flux decreases rapidly with reduced effective spatial
resolutions and is predominantly carried by the horizontal plasma motions
rather than vertical flows. Since the small-scale horizontal motions or the
smaller vortices carry most of the energy, the energy transported by vortices
deduced from low resolution data is grossly underestimated. In full resolution
simulation data, the Poynting flux contribution due to vortices is more than
adequate to compensate for the radiative losses in plage, indicating their
importance for chromospheric heating.Comment: 8 pages, 5 figures, accepted in ApJ
High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI
We characterize waves in small magnetic elements and investigate their
propagation in the lower solar atmosphere from observations at high spatial and
temporal resolution. We use the wavelet transform to analyze oscillations of
both horizontal displacement and intensity in magnetic bright points found in
the 300 nm and the Ca II H 396.8 nm passbands of the filter imager on board the
Sunrise balloon-borne solar observatory. Phase differences between the
oscillations at the two atmospheric layers corresponding to the two passbands
reveal upward propagating waves at high frequencies (up to 30 mHz). Weak
signatures of standing as well as downward propagating waves are also obtained.
Both compressible and incompressible (kink) waves are found in the small-scale
magnetic features. The two types of waves have different, though overlapping,
period distributions. Two independent estimates give a height difference of
approximately 450+-100 km between the two atmospheric layers sampled by the
employed spectral bands. This value, together with the determined short travel
times of the transverse and longitudinal waves provide us with phase speeds of
29+-2 km/s and 31+-2 km/s, respectively. We speculate that these phase speeds
may not reflect the true propagation speeds of the waves. Thus, effects such as
the refraction of fast longitudinal waves may contribute to an overestimate of
the phase speed.Comment: 14 pages, 7 figure
Altered brainstem responses to modafinil in schizophrenia: implications for adjunctive treatment of cognition.
Candidate pro-cognitive drugs for schizophrenia targeting several neurochemical systems have consistently failed to demonstrate robust efficacy. It remains untested whether concurrent antipsychotic medications exert pharmacodynamic interactions that mitigate pro-cognitive action in patients. We used functional MRI (fMRI) in a randomized, double-blind, placebo-controlled within-subject crossover test of single-dose modafinil effects in 27 medicated schizophrenia patients, interrogating brainstem regions where catecholamine systems arise to innervate the cortex, to link cellular and systems-level models of cognitive control. Modafinil effects were evaluated both within this patient group and compared to a healthy subject group. Modafinil modulated activity in the locus coeruleus (LC) and ventral tegmental area (VTA) in the patient group. However, compared to the healthy comparison group, these effects were altered as a function of task demands: the control-independent drug effect on deactivation was relatively attenuated (shallower) in the LC and exaggerated (deeper) in the VTA; in contrast, again compared to the comparison group, the control-related drug effects on positive activation were attenuated in LC, VTA and the cortical cognitive control network. These altered effects in the LC and VTA were significantly and specifically associated with the degree of antagonism of alpha-2 adrenergic and dopamine-2 receptors, respectively, by concurrently prescribed antipsychotics. These sources of evidence suggest interacting effects on catecholamine neurons of chronic antipsychotic treatment, which respectively increase and decrease sustained neuronal activity in LC and VTA. This is the first direct evidence in a clinical population to suggest that antipsychotic medications alter catecholamine neuronal activity to mitigate pro-cognitive drug action on cortical circuits
Waves as the source of apparent twisting motions in sunspot penumbrae
The motion of dark striations across bright filaments in a sunspot penumbra
has become an important new diagnostic of convective gas flows in penumbral
filaments. The nature of these striations has, however, remained unclear. Here
we present an analysis of small scale motions in penumbral filaments in both
simulations and observations. The simulations, when viewed from above, show
fine structure with dark lanes running outwards from the dark core of the
penumbral filaments. The dark lanes either occur preferentially on one side or
alternate between both sides of the filament. We identify this fine structure
with transverse (kink) oscillations of the filament, corresponding to a
sideways swaying of the filament. These oscillations have periods in the range
of 5-7 min and propagate outward and downward along the filament. Similar
features are found in observed G-band intensity time series of penumbral
filaments in a sunspot located near disk center obtained by the Broadband
Filter Imager (BFI) on board {\it Hinode}. We also find that some filaments
show dark striations moving to both sides of the filaments. Based on the
agreement between simulations and observations we conclude that the motions of
these striations are caused by transverse oscillations of the underlying bright
filaments.Comment: Accepted for publication in Astrophysical Journal on 8th April 201
Data users note: Apollo 17 lunar photography
The availability of Apollo 17 pictorial data is announced as an aid to the selection of the photographs for study. Brief descriptions are presented of the Apollo 17 flight, and the photographic equipment used during the flight. The following descriptions are also included: service module photography, command module photography, and lunar surface photography
Estimating the masses of extra-solar planets
All extra-solar planet masses that have been derived spectroscopically are
lower limits since the inclination of the orbit to our line-of-sight is unknown
except for transiting systems. It is, however, possible to determine the
inclination angle, i, between the rotation axis of a star and an observer's
line-of-sight from measurements of the projected equatorial velocity (v sin i),
the stellar rotation period (P_rot) and the stellar radius (R_star). This
allows the removal of the sin i dependency of spectroscopically derived
extra-solar planet masses under the assumption that the planetary orbits lie
perpendicular to the stellar rotation axis. We have carried out an extensive
literature search and present a catalogue of v sin i, P_rot, and R_star
estimates for exoplanet host stars. In addition, we have used Hipparcos
parallaxes and the Barnes-Evans relationship to further supplement the R_star
estimates obtained from the literature. Using this catalogue, we have obtained
sin i estimates using a Markov-chain Monte Carlo analysis. This allows proper
1-sigma two-tailed confidence limits to be placed on the derived sin i's along
with the transit probability for each planet to be determined. While a small
proportion of systems yield sin i's significantly greater than 1, most likely
due to poor P_rot estimations, the large majority are acceptable. We are
further encouraged by the cases where we have data on transiting systems, as
the technique indicates inclinations of ~90 degrees and high transit
probabilities. In total, we estimate the true masses of 133 extra-solar
planets. Of these, only 6 have revised masses that place them above the 13
Jupiter mass deuterium burning limit. Our work reveals a population of
high-mass planets with low eccentricities and we speculate that these may
represent the signature of different planetary formation mechanisms at work.Comment: 40 pages, 6 tables, 2 figures. Accepted for publication in the
Monthly Notices of the Royal Astronomical Society after editing of Tables 1 &
6 for electronic publication. Html abstract shortened for astro-ph submissio
The nature of solar brightness variations
The solar brightness varies on timescales from minutes to decades.
Determining the sources of such variations, often referred to as solar noise,
is of importance for multiple reasons: a) it is the background that limits the
detection of solar oscillations, b) variability in solar brightness is one of
the drivers of the Earth's climate system, c) it is a prototype of stellar
variability which is an important limiting factor for the detection of
extra-solar planets. Here we show that recent progress in simulations and
observations of the Sun makes it finally possible to pinpoint the source of the
solar noise. We utilise high-cadence observations from the Solar Dynamic
Observatory and the SATIRE model to calculate the magnetically-driven
variations of solar brightness. The brightness variations caused by the
constantly evolving cellular granulation pattern on the solar surface are
computed with the MURAM code. We find that surface magnetic field and
granulation can together precisely explain solar noise on timescales from
minutes to decades, i.e. ranging over more than six orders of magnitude in the
period. This accounts for all timescales that have so far been resolved or
covered by irradiance measurements. We demonstrate that no other sources of
variability are required to explain the data. Recent measurements of Sun-like
stars by CoRoT and Kepler uncovered brightness variations similar to that of
the Sun but with much wider variety of patterns. Our finding that solar
brightness variations can be replicated in detail with just two well-known
sources will greatly simplify future modelling of existing CoRoT and Kepler as
well as anticipated TESS and PLATO data.Comment: This is the submitted version of the paper published in Nature
Astronom
Maximal induced matchings in triangle-free graphs
An induced matching in a graph is a set of edges whose endpoints induce a
-regular subgraph. It is known that any -vertex graph has at most
maximal induced matchings, and this bound is best
possible. We prove that any -vertex triangle-free graph has at most maximal induced matchings, and this bound is attained by any
disjoint union of copies of the complete bipartite graph . Our result
implies that all maximal induced matchings in an -vertex triangle-free graph
can be listed in time , yielding the fastest known algorithm for
finding a maximum induced matching in a triangle-free graph.Comment: 17 page
Migration of Ca II H bright points in the internetwork
The migration of magnetic bright point-like features (MBP) in the lower solar
atmosphere reflects the dispersal of magnetic flux as well as the horizontal
flows of the atmospheric layer they are embedded in. We analyse trajectories of
the proper motion of intrinsically magnetic, isolated internetwork Ca II H MBPs
(mean lifetime 461 +- 9 s) to obtain their diffusivity behaviour. We use
seeing-free high spatial and temporal resolution image sequences of quiet-Sun,
disc-centre observations obtained in the Ca II H 3968 {\AA} passband of the
Sunrise Filter Imager (SuFI) onboard the Sunrise balloon-borne solar
observatory. Small MBPs in the internetwork are automatically tracked. The
trajectory of each MBP is then calculated and described by a diffusion index
({\gamma}) and a diffusion coefficient (D). We further explore the distribution
of the diffusion indices with the help of a Monte Carlo simulation. We find
{\gamma} = 1.69 +- 0.08 and D = 257 +- 32 km^2/s averaged over all MBPs.
Trajectories of most MBPs are classified as super-diffusive, i.e., {\gamma} >
1, with the determined {\gamma} being to our knowledge the largest obtained so
far. A direct correlation between D and time-scale ({\tau}) determined from
trajectories of all MBPs is also obtained. We discuss a simple scenario to
explain the diffusivity of the observed, relatively short-lived MBPs while they
migrate within a small area in a supergranule (i.e., an internetwork area). We
show that the scatter in the {\gamma} values obtained for individual MBPs is
due to their limited lifetimes. The super-diffusive MBPs can be well-described
as random walkers (due to granular evolution and intergranular turbu- lence)
superposed on a large systematic (background) velocity, caused by granular,
mesogranular and supergranular flows.Comment: 10 pages, 7 figures, 3 table
- …