193 research outputs found

    Developing a unified pipeline for large-scale structure data analysis with angular power spectra -- I. The importance of redshift-space distortions for galaxy number counts

    Get PDF
    We develop a cosmological parameter estimation code for (tomographic) angular power spectra analyses of galaxy number counts, for which we include, for the first time, redshift-space distortions (RSD) in the Limber approximation. This allows for a speed-up in computation time, and we emphasise that only angular scales where the Limber approximation is valid are included in our analysis. Our main result shows that a correct modelling of RSD is crucial not to bias cosmological parameter estimation. This happens not only for spectroscopy-detected galaxies, but even in the case of galaxy surveys with photometric redshift estimates. Moreover, a correct implementation of RSD is especially valuable in alleviating the degeneracy between the amplitude of the underlying matter power spectrum and the galaxy bias. We argue that our findings are particularly relevant for present and planned observational campaigns, such as the Euclid satellite or the Square Kilometre Array, which aim at studying the cosmic large-scale structure and trace its growth over a wide range of redshifts and scales.Comment: 18 pages, 11 figures, 4 tables. New expression for RSDs in Limber approximation (Eq. 9), much easier to implement in numerical codes. Results on "conservative scenario" slightly change

    Magnification bias as a novel probe for primordial magnetic fields

    Full text link
    In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 0.0005 nG for values of the PMF power spectral index ~0.Comment: 21 pages, 9 figures; published on JCA

    Inclusive Constraints on Unified Dark Matter Models from Future Large-Scale Surveys

    Full text link
    In the very last years, cosmological models where the properties of the dark components of the Universe - dark matter and dark energy - are accounted for by a single "dark fluid" have drawn increasing attention and interest. Amongst many proposals, Unified Dark Matter (UDM) cosmologies are promising candidates as effective theories. In these models, a scalar field with a non-canonical kinetic term in its Lagrangian mimics both the accelerated expansion of the Universe at late times and the clustering properties of the large-scale structure of the cosmos. However, UDM models also present peculiar behaviours, the most interesting one being the fact that the perturbations in the dark-matter component of the scalar field do have a non-negligible speed of sound. This gives rise to an effective Jeans scale for the Newtonian potential, below which the dark fluid does not cluster any more. This implies a growth of structures fairly different from that of the concordance LCDM model. In this paper, we demonstrate that forthcoming large-scale surveys will be able to discriminate between viable UDM models and LCDM to a good degree of accuracy. To this purpose, the planned Euclid satellite will be a powerful tool, since it will provide very accurate data on galaxy clustering and the weak lensing effect of cosmic shear. Finally, we also exploit the constraining power of the ongoing CMB Planck experiment. Although our approach is the most conservative, with the inclusion of only well-understood, linear dynamics, in the end we also show what could be done if some amount of non-linear information were included.Comment: 22 pages, 4 figures, 2 table

    Does Quartessence Ease Tensions?

    Get PDF
    Tensions between cosmic microwave background observations and the growth of the large-scale structure inferred from late-time probes pose a serious challenge to the concordance Λ\LambdaCDM cosmological model. State-of-the-art data from the Planck satellite predicts a higher rate of structure growth than what preferred by low-redshift observables. Such tension has hitherto eluded conclusive explanations in terms of straightforward modifications to Λ\LambdaCDM, e.g. the inclusion of massive neutrinos or a dynamical dark energy component. Here, we investigate models of 'quartessence' -- a single dark component mimicking both dark matter and dark energy -- whose non-vanishing sound speed inhibits structure growth at late times on scales smaller than its corresponding Jeans' length. In principle, this could reconcile high- and low-redshift observations. We put this hypothesis to test against temperature and polarisation spectra from the latest Planck release, SDSS DR12 measurements of baryon acoustic oscillations and redshift-space distortions, and cosmic shear correlation functions from KiDS. This the first time that any specific model of quartessence is applied to actual data. We show that, if we naively apply Λ\LambdaCDM nonlinear prescription to quartessence, the combined data sets allow for tight constraints on the model parameters. Apparently, quartessence alleviates the tension between the total matter fraction and late-time structure clustering, although in fact the tension is transferred from the latter to the quartessence sound speed parameter. However, we found that this strongly depends upon information from nonlinear scales. Indeed, if we relax this assumption, quartessence models appear still viable. For this reason, we argue that the nonlinear behaviour of quartessence deserves further investigation and may lead to a deeper understanding of the physics of the dark Universe.Comment: 8 pages, 6 figures, 1 table; matching published versio

    An updated analysis of two classes of f(R) theories of gravity

    Full text link
    The observed accelerated cosmic expansion can be a signature of fourth\,-\,order gravity theories, where the acceleration of the Universe is a consequence of departures from Einstein General Relativity, rather than the sign of the existence of a fluid with negative pressure. In the fourth\,-\,order gravity theories, the gravity Lagrangian is described by an analytic function f(R)f(R) of the scalar curvature RR subject to the demanding conditions that no detectable deviations from standard GR is observed on the Solar System scale. Here we consider two classes of f(R)f(R) theories able to pass Solar System tests and investigate their viability on cosmological scales. To this end, we fit the theories to a large dataset including the combined Hubble diagram of Type Ia Supernovae and Gamma Ray Bursts, the Hubble parameter H(z)H(z) data from passively evolving red galaxies, Baryon Acoustic Oscillations extracted from the seventh data release of the Sloan Digital Sky Survey (SDSS) and the distance priors from the Wilkinson Microwave Anisotropy Probe seven years (WMAP7) data. We find that both classes of f(R)f(R) fit very well this large dataset with the present\,-\,day values of the matter density, Hubble constant and deceleration parameter in agreement with previous estimates; however, the strong degeneracy among the f(R)f(R) parameters prevents us from strongly constraining their values. We also derive the growth factor g=dlnδ/dlnag = d\ln{\delta}/d\ln{a}, with δ=δρM/ρM\delta = \delta \rho_M/\rho_M the matter density perturbation, and show that it can still be well approximated by g(z)ΩM(z)γg(z) \propto \Omega_M(z)^{\gamma}. We finally constrain γ\gamma (on some representative scales) and investigate its redshift dependence to see whether future data can discriminate between these classes of f(R)f(R) theories and standard dark energy models.Comment: 27 pages, 5 figures, 1 table, accepted for publication on JCAP. Note that this paper updates and supersedes preprint arXiv:0907.468

    SKA Weak Lensing II: Simulated Performance and Survey Design Considerations

    Get PDF
    We construct a pipeline for simulating weak lensing cosmology surveys with the Square Kilometre Array (SKA), taking as inputs telescope sensitivity curves; correlated source flux, size and redshift distributions; a simple ionospheric model; source redshift and ellipticity measurement errors. We then use this simulation pipeline to optimise a 2-year weak lensing survey performed with the first deployment of the SKA (SKA1). Our assessments are based on the total signal-to-noise of the recovered shear power spectra, a metric that we find to correlate very well with a standard dark energy figure of merit. We first consider the choice of frequency band, trading off increases in number counts at lower frequencies against poorer resolution; our analysis strongly prefers the higher frequency Band 2 (950-1760 MHz) channel of the SKA-MID telescope to the lower frequency Band 1 (350-1050 MHz). Best results would be obtained by allowing the centre of Band 2 to shift towards lower frequency, around 1.1 GHz. We then move on to consider survey size, finding that an area of 5,000 square degrees is optimal for most SKA1 instrumental configurations. Finally, we forecast the performance of a weak lensing survey with the second deployment of the SKA. The increased survey size (3π\pi\,steradian) and sensitivity improves both the signal-to-noise and the dark energy metrics by two orders of magnitude.Comment: 15 pages, 11 figures, 1 table. Comments welcome. Updated to match published versio

    SKA Weak Lensing III: Added Value of Multi-Wavelength Synergies for the Mitigation of Systematics

    Get PDF
    In this third paper of a series on radio weak lensing for cosmology with the Square Kilometre Array, we scrutinise synergies between cosmic shear measurements in the radio and optical/near-IR bands for mitigating systematic effects. We focus on three main classes of systematics: (i) experimental systematic errors in the observed shear; (ii) signal contamination by intrinsic alignments; and (iii) systematic effects due to an incorrect modelling of non-linear scales. First, we show that a comprehensive, multi-wavelength analysis provides a self-calibration method for experimental systematic effects, only implying <50% increment on the errors on cosmological parameters. We also illustrate how the cross-correlation between radio and optical/near-IR surveys alone is able to remove residual systematics with variance as large as 0.00001, i.e. the same order of magnitude of the cosmological signal. This also opens the possibility of using such a cross-correlation as a means to detect unknown experimental systematics. Secondly, we demonstrate that, thanks to polarisation information, radio weak lensing surveys will be able to mitigate contamination by intrinsic alignments, in a way similar but fully complementary to available self-calibration methods based on position-shear correlations. Lastly, we illustrate how radio weak lensing experiments, reaching higher redshifts than those accessible to optical surveys, will probe dark energy and the growth of cosmic structures in regimes less contaminated by non-linearities in the matter perturbations. For instance, the higher-redshift bins of radio catalogues peak at z~0.8-1, whereas their optical/near-IR counterparts are limited to z<0.5-0.7. This translates into having a cosmological signal 2 to 5 times less contaminated by non-linear perturbations.Comment: 16 pages, 10 figures, 2 tables; improved discussion of experimental systematics in Sec. 2; updated to match published versio
    corecore