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ABSTRACT
In this third paper of a series on radio weak lensing for cosmology with the Square Kilo-
metre Array, we scrutinize synergies between cosmic shear measurements in the radio and
optical/near-infrared (IR) bands for mitigating systematic effects. We focus on three main
classes of systematics: (i) experimental systematic errors in the observed shear; (ii) signal con-
tamination by intrinsic alignments and (iii) systematic effects due to an incorrect modelling of
non-linear scales. First, we show that a comprehensive, multiwavelength analysis provides a
self-calibration method for experimental systematic effects, only implying <50 per cent incre-
ment on the errors on cosmological parameters. We also illustrate how the cross-correlation
between radio and optical/near-IR surveys alone is able to remove residual systematics with
variance as large as 10−5, i.e. the same order of magnitude of the cosmological signal. This
also opens the possibility of using such a cross-correlation as a means to detect unknown
experimental systematics. Secondly, we demonstrate that, thanks to polarization information,
radio weak lensing surveys will be able to mitigate contamination by intrinsic alignments, in a
way similar but fully complementary to available self-calibration methods based on position–
shear correlations. Lastly, we illustrate how radio weak lensing experiments, reaching higher
redshifts than those accessible to optical surveys, will probe dark energy and the growth
of cosmic structures in regimes less contaminated by non-linearities in the matter perturba-
tions. For instance, the higher redshift bins of radio catalogues peak at z � 0.8–1, whereas
their optical/near-IR counterparts are limited to z � 0.5–0.7. This translates into having a
cosmological signal 2–5 times less contaminated by non-linear perturbations.
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1 IN T RO D U C T I O N

The weak gravitational lensing effect of cosmic shear is one of the
main probes that the present and forthcoming generations of cos-
mological experiments aim at employing to perform high-precision
and high-accuracy cosmology. Weak lensing is particularly valuable
because it probes both the background evolution of the Universe and
the growth of cosmic structures. For this reason, it has been advo-
cated as an optimal way to test dark matter (Bacon & Taylor 2003;
Taylor et al. 2004; Camera et al. 2013, 2015; Shirasaki, Horiuchi &
Yoshida 2014), dark energy (Heavens, Kitching & Taylor 2006;
Taylor et al. 2007; Amendola, Kunz & Sapone 2008; Beynon
et al. 2012; Camera & Nishizawa 2013) and modified gravity
(Ishak, Upadhye & Spergel 2006; Heavens, Kitching & Verde 2007;
Schmidt 2008; Tsujikawa & Tatekawa 2008; Camera et al. 2009,
2011c; Beynon, Bacon & Koyama 2010; Belloso, Garcia-Bellido &
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Sapone 2011; Camera, Diaferio & Cardone 2011a,b), in particular,
in combination with galaxy number counts and other observables
(Hu & Jain 2004; Jain & Zhang 2008; Camera, Carbone & Moscar-
dini 2012; Camera, Cardone & Radicella 2014).

Cosmic shear surveys involve measuring correlations in the ellip-
ticities of hundreds of thousands to tens of millions of galaxies over
large areas of the sky and a wide range of redshifts (see e.g. Munshi
et al. 2008). The main effort towards cosmic shear cosmology has
hitherto focused on the optical and near-infrared (IR) bands, mainly
due to the much larger number densities of background galaxies
achievable at those wavelengths. Nevertheless, the possibility of
weak lensing measurements in the radio band has more recently at-
tracted an increasing interest. Chang, Refregier & Helfand (2004),
who detected a cosmic shear signal in the Faint Images of the Radio
Sky at Twenty cm (FIRST) survey conducted with the Very Large
Array, demonstrated that weak lensing analyses can be performed
with radio data. Despite the low source number density of FIRST –
approximately 90 sources per deg2, 400 times smaller than in deep
optical lensing surveys – a detection of cosmic shear on large scales
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was achieved by virtue of the large survey area covered: a quarter
of the sky.

In this respect, the Square Kilometre Array (SKA) can be re-
garded as a game changer, thanks to its anticipated number densities
of well-detected and well-resolved galaxies of up to ∼5 galaxies per
arcmin2 over several thousand deg2 in Phase 1, and twice this num-
ber density over three-quarters of the sky in Phase 2. Furthermore,
the radio band offers truly unique approaches to measuring weak
lensing, which are not available to optical surveys (see e.g. Brown
et al. 2015, for an introduction) and are potentially extremely pow-
erful in minimizing the most worrying systematic effects in weak
lensing cosmology (Demetroullas & Brown 2016). With the aim of
quantitatively assessing the potential of the SKA for weak lensing
cosmology, we have embarked in a long-term project, whereby the
present work represents the third step.

Previously, in Harrison et al. (2016, hereafter Paper I), we have
constructed forecasts for cosmological parameter estimation. We
have shown that the first phase of the SKA (SKA1) can be compet-
itive with experiments such as the Dark Energy Survey (DES) and
that the full SKA (SKA2) can potentially provide us with tighter
constraints from weak lensing alone than optical cosmic shear sur-
veys such as the Large Synoptic Survey Telescope (LSST) or the
European Space Agency Euclid satellite. Moreover, we explored the
gain brought by cross-correlating shear maps between the optical
and radio wavebands – a process that will be investigated further
here.

Then, in Bonaldi et al. (2016, hereafter Paper II), we have
constructed a pipeline for simulating realistic SKA weak lens-
ing cosmology surveys. As inputs, we took: telescope sensitiv-
ity curves; correlated source flux, size and redshift distributions;
a simple ionospheric model and source redshift and ellipticity
measurement errors. We have demonstrated that SKA frequency
Band 2 (950–1760 MHz) is preferred for weak lensing science,
and that an area between 1000 and 5000 deg2 is optimal for
most SKA1 instrumental configurations, depending on observing
time.

Here, we extend our analysis and scrutinize the impact of real-
world effects on the deliverable science products of SKA weak lens-
ing surveys. Indeed, so-called Stages III and IV Dark Energy Task
Force (DETF; see Albrecht et al. 2006) cosmic shear experiments
– of which, respectively, SKA1 and SKA2 will be representatives –
will be limited not by statistical uncertainties but rather by (known
and unknown) systematic effects. Therefore, we model several sys-
tematic errors that will most likely affect weak lensing surveys. We
both forecast the degradation that these systematics will cause and
propose ways to overcome such problems, thus recovering (most
of) the cosmological information. For the sake of simplicity, we
focus on one type of systematic error at a time, exploring regimes
where it can also be larger than the cosmological signal itself. It has
to be noted, though, that when performing an actual data analysis,
many different systematic effects may be present at the same time.
We show that synergies between cosmic shear experiments in the
radio and optical/near-IR bands are extremely effective in removing
contamination from systematics.

The paper is structured as follows: in Section 2, we outline
the methodology employed; in Section 3, we focus on various
types of experimental systematic errors; in Section 4, we anal-
yse contamination from intrinsic alignments (IAs); in Section 5,
we show how radio cosmic shear surveys will be more effec-
tive in extracting cosmological information from linear scales
and in Section 6, we summarize our results and draw our major
conclusions.

2 M E T H O D O L O G Y

2.1 Observables

The focus of this work is the weak lensing effect of cosmic shear (as
usual, denoted by γ ), whose angular power spectrum depends on
the underlying cosmological model, as well as the experimental set-
up. Hereafter, we shall denote by X, Y a survey observing at a given
wavelength (radio or optical/near-IR), and indices i, j will refer
to redshift bins within which the redshift distribution of sources,
nX, Y(z), have been divided into. So, C

XiYj

� is the cross-correlation
angular power spectrum of cosmic shear measured in the ith redshift
bin of experiment X and in the jth redshift bin of experiment Y. This
said, we can write

C
XiYj

� = 2π2

�3

∫
dχ χWXi (χ )WYj (χ )�2

δ [k�(χ ), χ ], (1)

where � is angular scale, χ the radial comoving distance, �2
δ

is the dimensionless power spectrum of density fluctuations and
k�(χ ) = �/χ stems from Limber’s approximation (Limber 1953;
Kaiser 1992). The W functions are the shear kernels, which read

WXi (χ ) = 3

2
H 2

0 �m[1 + z(χ )]χ
∫ ∞

χ

dχ ′ χ
′ − χ

χ ′ nXi
(χ ′), (2)

with z the redshift and H0 the Hubble constant.
Following Paper I, as proxies for Stages III and IV DETF cos-

mic shear surveys we, respectively, adopt: the Dark Energy Survey1

(DES; The Dark Energy Survey Collaboration 2005, 2015) and
a Euclid-like experiment2 (Laureijs et al. 2011; Amendola et al.
2013, 2016) in the optical/near-IR band; and SKA Phase 1, and
the full SKA3 (Dewdney et al. 2009; Brown et al. 2015) at ra-
dio wavelengths. (For additional details, we refer to section 3 of
Paper I.)

2.2 Fisher matrix analysis

To forecast the constraining power of the various radio and
optical/near-IR cosmic shear surveys we are interested in, we adopt
a Fisher matrix approach. Given a likelihood function L(ϑ) for a
set of model parameters ϑ = {ϑα}, and assuming that the behaviour
of the likelihood near its maximum characterizes the whole likeli-
hood function sufficiently well to be used to estimate errors on the
model parameters (Jeffreys 1961; Vogeley & Szalay 1996; Tegmark,
Taylor & Heavens 1997), the 1σ marginal error on parameter ϑα

reads

σ (ϑα) =
√(

F−1
)

αα
, (3)

where

Fαβ =
〈

−∂2 ln L(ϑ)

∂ϑα∂ϑβ

〉
(4)

is the Fisher matrix, F−1 is its inverse and the index ‘αα’ denotes
diagonal elements. Furthermore, the Fisher matrix approach allows
us to estimate the bias, b(ϑα), that we would get on a parameter’s
best-fitting value if we neglected some other (e.g. systematic) pa-
rameter in the analysis. The calculation of such a bias is presented
and discussed in Appendix A.

1 http://darkenergysurvey.org
2 http://euclid-ec.org
3 http://skatelescope.org
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Our data will come from the measurement of the (auto- or
cross-) correlation angular power spectra C

XiYj

� between the ob-
served shear inferred from galaxy ellipticities for radio and
optical/near-IR experiments X and Y in the redshift bins i and j (see
Paper I for details). In the presence of noise, NXiYj

� , the observed
cosmic shear power spectrum is

Ĉ
XiYj

� = C
XiYj

� + NXiYj

� . (5)

Then, to translate the Fisher matrix to the space of the model pa-
rameters, ϑ , it is sufficient to multiply the inverse of the covariance
matrix by the Jacobian of the change of variables, viz.

Fαβ =
�max∑

�,�′=�min

∂CXY
�

∂ϑα

[
XY

��′
]−1 ∂CXY

�′

∂ϑβ

, (6)

where XY
��′ is the data covariance (assumed to be diagonal in � − �′).

As in Paper I, we consider the standard � cold dark matter (�CDM)
parameter vector ϑ = {�m, �b, h, ns, σ8}, to which we append the
dark energy equation-of-state parameters, {w0, wa}, when we quote
dark energy forecasts. In the following, we fix �min = 20 and
�max = 3000.

For computational simplicity, the �-diagonal matrix XY
��′ only

represents the Gaussian part of the total covariance matrix, whose
other terms are a non-Gaussian part, coming from the trispectrum,
and the so-called supersample variance. Employing the full co-
variance matrix is not fully equivalent to the simplified Gaussian
case usually adopted here and in Fisher matrix analyses. However,
we emphasize that we do not extend our analysis to the strongly
non-linear regime of perturbations and that, at the �max considered
here, marginal errors forecast with the Gaussian and non-Gaussian
covariance are still in good agreement (e.g. Kiessling, Taylor &
Heavens 2011).

Given the large number of spectra necessary for all the experi-
ments and cross-correlations we employ, as well as the many (cos-
mological and nuisance) parameters investigated, we have exten-
sively tested the stability and reliability of our Fisher matrices in
various ways. A comprehensive description of our method is out-
lined in Appendix B. Moreover, we cross-checked our Fisher matrix
procedure against the Markov chain Monte Carlo (MCMC) simu-
lations used in Paper I. The detailed results of this comparison
are presented in Appendix C, and the general agreement is very
good: the scatter between the two methods is generally smaller than
10 per cent but for the parameters with the most non-Gaussian con-
tours and some configurations where the role of priors is particularly
important.

3 EXPERIMENTA L SYSTEMATICS

As emphasized in Brown et al. (2015), radio and optical weak
lensing surveys have a particularly useful synergy in quantifying and
reducing the impact of systematic effects that may dominate each
survey alone. Here, we explore to what extent the cross-correlation
of the shear estimators from one of these surveys with those of the
other will mitigate the impact of several systematic errors.

Starting from the complex shear γ = γ 1 + iγ 2 at a given 3D
position on the sky, (θ , z), we assume that the measured shear
contains the cosmological signal γ plus a systematic error, viz.
γ obs = γ + γ sys. Here, we assume that the shear systematic error
can be decomposed into residual systematics and a calibration error
(often called additive and a multiplicative terms; cf. Heymans et al.

2006; Huterer et al. 2006; Massey et al. 2007; Amara & Refregier
2008), namely

γ sys(θ, z) = γ mul(z)γ (θ, z) + γ add(θ, z). (7)

Under the assumption of no noise and of small multiplicative sys-
tematics, this leads to an observed power spectrum of the form

Cobs
� (z, z′)

= {
1 + [

γ mul(z) + γ mul(z′)
]}

C�(z, z′) + Cadd
� (z, z′). (8)

Whilst a full treatment of the various effects that could lead
to experimental systematics is strongly survey dependent and is
beyond the purpose of this paper (see e.g. Cardone et al. 2014, for a
comprehensive analysis of optical survey systematics), we shall here
focus on some general shapes of the systematics power spectrum
that is possibly more degenerate with the cosmological signal we
are after. The purpose of this is to quantify the amelioration brought
by the cross-correlation of radio and optical/near-IR cosmic shear
measurements.

3.1 Residual systematics

Our approach is to be agnostic about the origin of the systematic
effects, and instead parametrize them with an �-dependence. Fol-
lowing Amara & Refregier (2008), we define

Cadd
� = Aadd

nadd log(�/�add) + 1

�(� + 1)
, (9)

which allows for the possibility that the residual systematics power
spectrum can be positive or negative, and that it may transit from
one to the other. More specifically, �(� + 1)Cadd

� , whose slope is
naddAadd, scales linearly with log � and amounts to Aadd at �add.
For practical purposes, we set the amplitude Aadd – the additional
parameter that we marginalize over – according to the systematics
signal variance:

σ 2
sys =

∫
d ln �

2π
�(� + 1)

∣∣Cadd
�

∣∣ . (10)

To have a better grasp of how such residual systematic effects will
look at the level of the power spectrum, Fig. 1 depicts equation (9),
where the grey curves are Cadd

� for σ 2
sys = 10−8, 10−7, 10−6 and 10−5

from bottom to top. We choose �add = 300, and thin/thick lines are
for nadd = ±1. As a comparison, the blue and red curves, respec-
tively, show the shear power spectrum for radio and optical/near-
IR alone in the first redshift bin autocorrelation. Note that, since
weak lensing is an integrated signal along the line of sight – i.e.
it increases with redshift – the cosmic shear power spectra we
depict here are those with the smallest signal, namely those for
which the contamination from the systematics power spectrum is the
largest.

Fig. 2 shows the impact of this type of additive systematic effect.
The bias b(ϑα) on the reconstruction of each �CDM and dark en-
ergy cosmological parameter in units of the forecast precision on
the measurement, σ (ϑα), is shown as a function of the systemat-
ics signal variance defined in equation (10), for Stages III and IV
DETF cosmic shear surveys (left- and right-hand panels, respec-
tively). The horizontal white band represents a ‘safety’ area where
such additive systematics lead to a bias in cosmological parameter
reconstruction within 1σ of its true value. In other words, this sets
a requirement on optical/near-IR and radio cosmic shear surveys in
order not to severely bias cosmological parameter reconstruction.
As above, �add = 300, and we have explored a wide range of nadd
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Figure 1. Residual (additive) systematics power spectra (grey curves) for
σ 2

sys = 10−8, 10−7, 10−6 and 10−5 (from bottom to top), �add = 300 and
nadd = ±1 (thin/thick lines). As a comparison, the cosmic shear angular
power spectra with the smallest power (viz. for the lowest redshift bins) are
shown for Stages III (dashed) and IV (solid) DETF experiments (blue for
radio and red for optical/near-IR surveys).

values as in Fig. 1, from steep and negative slopes (nadd = −1, thick
lines), to positive tilts (nadd = 1, thin lines). We find that the magni-
tude of the effect and the impact on parameter reconstruction, albeit
at a first glance rather constant, has a non-negligible increment

for Stage IV surveys. This is due to the higher sensitivity of such
next-generation experiments to cosmological parameters – that is
to say, their smaller σ (ϑα). Fig. 3 shows the impact of this residual
systematics to the reconstruction of dark energy equation-of-state
parameters, {w0, wa}. Left-hand (right-hand) panel refers to Stage
III(IV) DETF cosmic shear experiments, with radio, optical/near-IR
and their cross-correlation, respectively, in blue, red and green. The
black cross indicates the �CDM fiducial value, i.e. {w0, wa}= {−1,
0}. The green solid, correctly centred ellipse shows the unbiased re-
sult obtained with the cross-correlation of optical/near-IR and radio
surveys (insensitive to additive systematics), whereas dashed, dot–
dashed and dotted ellipses are for the residual systematic power
spectrum with nadd = −1 and variance σ 2

sys = 10−7, 10−6 and 5
× 10−5, respectively. It appears to be a worrying scenario, par-
ticularly for Stage IV DETF surveys (right-hand panel). This is
mainly because such experiments will reach an exquisite accuracy
in the measurement of the various cosmological parameters, be-
ing therefore more prone to even small biases due to systematics.
In this case, the added value of the cross-correlation cosmic shear
power spectrum of radio and optical/near-IR is straightforward to
appreciate.

3.2 Calibration errors

As also discussed by Huterer et al. (2006), a calibration system-
atic error in the estimate of the shear γ leads to a multiplica-
tive spurious term represented by the term in square brackets in
equation (8). Such a calibration error manifests itself as an over-
all amplitude factorizing the cosmological signal, viz. γ mul(z)γ (θ ,
z). There are, however, two important differences compared to the

Figure 2. Normalized bias on cosmological parameters, b(ϑα)/σ (ϑα), as a function of the systematic signal variance, σ 2
sys. The left-hand (right-hand) panel

is for Stage III(IV) DETF experiments, with solid(dashed) curves for optical/near-IR(radio) cosmic shear measurements. Each colour refers to a specific
cosmological parameter, whilst the thickness of the curve is related to the slope of systematics power spectrum (see the text). The central, horizontal white
band denotes a 1σ confidence interval within which the statistical error dominates over the bias.
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Figure 3. Marginal joint 1σ error contours in the dark energy equation-of-state parameter plane. The black cross indicates the �CDM fiducial values for dark
energy parameters, namely {w0, wa} = {−1, 0}. Blue, red and green ellipses are for radio and optical/near-IR surveys and their cross-correlation, respectively.
The left-hand (right-hand) panel is for Stage III(IV) DETF cosmic shear surveys. Dashed, dot–dashed and dotted contours refer to amplitudes of the residual
systematic power spectrum with variance σ 2

sys = 10−7, 10−6 and 5 × 10−5, respectively. All contours but those for the cross-correlation are biased (i.e. they
are not centred on the black cross) due to the presence of residual, additive experimental systematics (Section 3.1).

previous case of residual (or additive) systematics. First, a calibra-
tion error term will be also present in the cross-correlation power
spectrum. This is because this multiplicative systematic term, be-
ing attached to the cosmological signal in the fashion of an overall
amplitude, will not cancel out when correlating data sets obtained
in different bands of the electromagnetic spectrum – opposite to
what will happen for the residual (additive) systematic effect dis-
cussed in Section 3.1. Secondly, such a term will most likely present
a redshift-bin dependence, inherited from γ mul(z). Nevertheless, it
is important to emphasize that the multiplicative calibration er-
ror γ mul(z) will be different for radio and optical/near-IR, and the
cross-correlation of the measurements will bear a combination of
the two. Therefore, in the worst case scenario where the calibration
error is so severe as to seriously threaten the precision of parame-
ter estimation, the confidence regions for radio or optical/near-IR
autocorrelations (shown for instance in Fig. 3) will be scattered
around the parameter space with no apparent correlation, whereas
the cross-correlation of the two will contain information on both
calibration errors. Hence, an a posteriori reconstruction can be per-
formed, where we could iteratively try to remove two multiplicative
systematic effects, i.e. for radio and optical/near-IR data, by using
three variables, namely the two autocorrelation cosmic shear power
spectra and their cross-correlation.

To illustrate this, we generate 20 random calibration errors
γ mul

X,i , 10 for the 10 radio redshift bins and 10 for the 10
optical/near-IR bins, (uniformly) randomly picked in the range
0 per cent, 10 per cent. By doing so, we construct a matrix M, with
entries

Mij = Amul

(
γ mul

Xi
+ γ mul

Yj

)
, (11)

Figure 4. Same as the right-hand panels of Fig. 3, but for calibration errors
(Section 3.2). Note that, in this case, the contours obtained via the cross-
correlation of DES and SKA1 too is biased. Conversely, the self-calibrated
combination of all auto- and cross-correlations, with the inclusion of nui-
sance parameters for calibration errors, is not (black ellipse).

and overall amplitude parameter Amul, which we marginalize over.
This matrix multiplies the cosmic shear tomographic matrix CXY

� .
The results are presented in Fig. 4, where, as opposed to Fig. 3, the
green ellipse of the cross-correlation of radio and optical/near-IR
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surveys is biased as well as those of the two autocorrelations. To
overcome this issue, we can implement the a posteriori reconstruc-
tion discussed above. To do so, we put all the information together.
In other words, we perform the Fisher analysis for a single data
vector⎛⎝ CXX

�

CXY
�

CYY
�

⎞⎠ , (12)

whose covariance, modulo a factor of δK
��′/[(2� + 1)fsky], reads⎛⎜⎜⎜⎜⎝

2
(
Ĉ

XX

�

)2
2Ĉ

XX

� Ĉ
XY

� 2
(
Ĉ

YY

�

)2

2Ĉ
XX

� Ĉ
XY

�

(
Ĉ

XY

�

)2
+ Ĉ

XX

� Ĉ
YY

� 2Ĉ
XY

� Ĉ
YY

�

2
(
Ĉ

XY

�

)2
2Ĉ

XY

� Ĉ
YY

� 2
(
Ĉ

YY

�

)2

⎞⎟⎟⎟⎟⎠ . (13)

The black ellipse shows the result for such a combination of auto-
and cross-correlations. It is worth noting that, despite including one
additional nuisance parameter, Amul, the black contour is tighter
than the single blue, red and green ellipses, thanks to the fact that it
encodes all the available information.

We can also be more conservative and, instead of Amul, consider
20 nuisance parameters representing the amplitudes of the 10 cali-
bration errors for optical/near-IR measurements and the 10 ones for
radio shear estimates, then marginalizing over them all. Although
the outcome of such a more conservative analysis is obviously less
constraining than the previous case, we find then forecast errors on
cosmological parameters only increase by less than 50 per cent with
respect to the case with no nuisance parameters. This is a remarkable
result, showing the usefulness of this self-calibration method, for
which, we emphasize, the result is not biased due to any systematic
effects.

4 INTRINSIC ALIGNMENTS

So far, we have considered that the only spurious term in a measure-
ment of cosmic shear is due to an experimental systematic error.
However, another, well-known source of systematics is due to IAs of
galaxy orientations. Indeed, the shapes of galaxies are not truly ran-
domly oriented on the sky. During the processes leading to the for-
mation of galaxies and their evolution, environmental effects such
as tidal gravitational fields in the large-scale structure tend to align
nearby galaxies. Furthermore, events such as galaxy mergers affect
the relative alignments of both galaxies’ shapes and angular mo-
menta throughout their history (see Joachimi et al. 2015; Kiessling
et al. 2015; Kirk et al. 2015, for a recent review series). If we now
focus on IAs only, the observed galaxy ellipticity is εobs = γ + εint,
where εint is the intrinsic ellipticity of a given galaxy. Therefore,
when we correlate observed ellipticities, we obtain

〈εobsεobs〉 = 〈γ γ 〉 + 2〈γ εint〉 + 〈εintεint〉. (14)

The first term is the cosmological weak lensing shear we are after,
whilst the second and third terms are the very contaminants which
we refer to when we talk of IAs. Usually, they are called ‘GI’ and ‘II’
terms, since they are correlations between the gravitational lensing
signal (G) and the intrinsic shape (I).

Given the cosmic shear term (GG) defined in equation (1), the
projected angular power spectra for the IA terms are

C
XiYj

(GI)� = 2π2

�3

∫
dχ χWXi (χ )nYj

(χ )�2
GI [k�(χ ), χ ], (15)

C
XiYj

(II)� = 2π2

�3

∫
dχ χnXi

(χ )nYj
(χ )�2

II [k�(χ ), χ ]. (16)

Basically, in the GI spectrum one of the lensing kernels is replaced
by the galaxy redshift distribution of the sources, whereas both
of them are replaced in the II spectrum. The main unknown in
these expressions are the IA power spectra, �2

GI [k�(χ ), χ ] and
�2

II [k�(χ ), χ ]. As a reference, we here adopt the non-linear IA
model often dubbed ‘corrected Bridle & King’ (see also Hirata &
Seljak 2004; Bridle & King 2007; Kirk et al. 2012; Blazek, Vlah &
Seljak 2015), where they read

�2
GI(k, χ ) = −C1

ρ̄(χ )

D(χ )
�2

δ (k, χ ), (17)

�2
II(k, χ ) =

[
−C1

ρ̄(χ )

D(χ )

]2

�2
δ (k, χ ), (18)

with ρ̄[χ (z)] the background energy density at redshift z, and
D the linear growth factor. Here, C1 is the normalization of
the IA contribution, for which we use a fiducial value of
5 × 10−14 h−2 Mpc3/M	, following Bridle & King (2007), who
matched the power spectra based on the measurement of the II
signal by Brown et al. (2002).

Fig. 5 illustrates the impact of neglecting IAs in the reconstruction
of the dark energy equation-of-state parameters {w0, wa}. As in
Fig. 3, left-hand (right-hand) panel is for Stage III(IV) DETF cosmic
shear experiments, whereas red, blue and green, respectively, refer
to optical/near-IR and radio surveys and their cross-correlation. The
cross indicates the �CDM fiducial value of {w0, wa} = {−1, 0}.
Dashed contours show the best-fitting confidence region that will
be erroneously reconstructed if IAs were neglected in the analysis,
whereas filled, coloured contours (correctly centred at values of
a cosmological constant) are for the case where we introduce IA
nuisance parameters and marginalize over them. Specifically, we
here consider two types of nuisance parameters: (i) a bias bI related
to the power spectrum of the II term with respect to the matter
power spectrum; and (ii) a correlation coefficient rI related to the
cross-correlation GI terms. Basically, each II power spectrum, for
all the redshift bin combinations i − j, brings a bi

I b
j
I factor, whereas

GI power spectra are multiplied by bi
I r

j
I . This means that we add

40 nuisance parameters to our �CDM plus dark energy seven-
parameter set. Such a number of nuisance parameters is the reason
for the broadening of the solid ellipses with respect to the dashed
contours.

Here, our focus is the effect of neglecting IAs and ways by which
multiwavelength synergies can help mitigating this issue. However,
it is worth to note that the true functional form of the GI and II IA
power spectra is unknown. By including bias and correlation coef-
ficients in the analysis we take into account an unknown amplitude
for the IA signal, but we implicitly assume that the shape of the
power spectrum is known a priori. To appreciate the impact of dif-
ferent IA models, we refer the reader to e.g. Kirk et al. (2012) and
Krause, Eifler & Blazek (2016), who also find biases comparable
to ours.

4.1 Use of polarization information

Fig. 5 also shows the amelioration brought by cosmic shear mea-
surements in the radio band due to the use of source polarization
information. Following Brown & Battye (2011), we can define a
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Figure 5. Similar to Fig. 3, but with the systematic effect causing the bias being IAs. Plots from top to bottom show results for radio (blue) and optical/near-IR
(red) surveys as well as their cross-correlation (green). Here, filled, coloured contours are for the de-biased case in which we add 40 IA nuisance parameter,
whereas the innermost, empty contours refer to a case in which 95 per cent of radio sources have polarization information and 5◦ intrinsic orientation scatter.
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new estimator for the cosmic shear signal based on a galaxy’s po-
larization position angle α. This quantity can indeed be measured if
polarization information is available, thanks to the fact that scalar
perturbations such as density inhomogeneities distort background
galaxy images but not their polarization orientation. Hence, if the
intrinsic scatter in a measurement of the polarization position angle
is αrms and a radio cosmic shear catalogue has polarization infor-
mation for a fraction fpol of the total number of galaxies for which
it has shear estimates, such a new estimator has a noise

NXiYj

pol = δK
ij

(4αrmsσε)2

fpolNi
g

. (19)

This relates to the usual noise in a cosmic shear measurement as
NXiYj = fpol/(4αrms)2 × NXiYj

pol . The major advantage of this when
dealing with IAs is the fact that, not being gravitationally lensed,
a galaxy’s position angle is an unbiased estimator of its true orien-
tation in the sky. This means that, for those galaxies for which we
have polarization information, their cosmic shear power spectrum,
recovered via the Brown & Battye (2011) estimator, does not contain
IA contributions. We can therefore use it to remove contamination
from IAs. In Fig. 5, alongside the brute-force approach where we
add nuisance parameters to account for IAs (filled, coloured con-
tours), we also present an idealistic case in which 95 per cent of radio
sources have polarization information and their intrinsic orientation
scatter is αrms = 5◦ (empty contours). Clearly, the cosmological in-
formation is recovered to high accuracy. Even better, a comparison
between the solid, thick ellipses and the solid, thin ones shows that
the former is even tighter than the latter. This is because, whereas
the latter does not take IAs into account at all, the former takes
advantage of the cosmological information encoded in the II and
GI power spectra. Indeed, being proportional to the matter power
spectrum, they too contain valuable cosmological information.

Clearly, the thin, solid ellipses in the middle and bottom rows
of Fig. 5 refer to a very optimistic case. Nonetheless, this gives
us an idea of the amount of information that could in principle
be recovered thanks to the polarization information in radio cos-
mic shear measurements. In a sense, the area within the outer and
the innermost ellipse is a proxy of all the various, more realistic
cases between no polarization information at all and the ideal-
istic scenario represented by the thin contours. In the following
section, we shall outline the state of the art in this respect. As a
final remark, we emphasize that the use of polarization informa-
tion is wholly complementary to more standard techniques such
as so-called ‘self-calibration’, where the clustering information on
galaxies’ three-dimensional position is exploited to put constraints
on the IA nuisance parameters (e.g. Kirk et al. 2012).

4.2 Prospects for polarization measurements

The polarization properties of star-forming galaxies are still poorly
known. The polarized signal is typically only a few per cent of the
total brightness, which means that very deep observations (down
to the μJy level) are needed to collect large samples. Based on a
three-dimensional model of the Milky Way, Sun & Reich (2012)
predict integrated polarization fractions of ∼4.2 per cent at 4.8 GHz
and ∼0.8 per cent at 1.4 GHz. The former value is consistent with
the analysis of local spiral galaxies at 4.8 GHz by Stil et al. (2009)
(the polarization fraction ranges 1–15 per cent with an average of
4.2 per cent). The deep (>15 μJy) polarization analysis at 1.4 GHz
of the GOODS-N field shows a flattening of the polarized counts
d log N(>p)/d log (p) from −1.5 to −0.6 below 1 mJy (Rudnick &

Owen 2014), which is ascribed to the star-forming population being
typically less polarized than active galactic nuclei (AGN).

Converting from polarization fractions to fpol (the number of
galaxies detected in both total intensity and polarization) is not
straightforward. One crucial aspect is the extent of the anticorre-
lation between total intensity and fractional polarization found in
many studies (e.g. Mesa et al. 2002; Subrahmanyan et al. 2010).
The most recent results report a flattening of this anticorrelation at
fainter fluxes, which would limit fpol to a few per cent (e.g. Rudnick
& Owen 2014; Stil et al. 2014).

There are indications that the polarization angle is strongly
aligned with the galaxies’ major axis, with intrinsic scatter lower
than ±15◦ (Stil et al. 2009; Sun & Reich 2012). Reasonable physi-
cal considerations suggest that this scatter will be lower in galaxies
which have stronger magnetic fields and hence higher levels of po-
larization, giving a useful correlation between polarization fraction
of a sample and αrms. Furthermore, even in cases where polarization
is not formally detected to a given significance in a blind polariza-
tion survey, we will be attempting to measure polarization of objects
detected in continuum surveys. This continuum detection may be
expected to give useful prior information on a polarization measure-
ment (e.g. the sky location of the galaxy). Forming a full posterior
probability P(α) for the polarization angle should then be possible
and could then be propagated to the shear estimator regardless of
the headline detection significance.

5 N O N - L I N E A R SC A L E S

The final major source of systematic errors that we investigate in
this work is due to an incorrect treatment of the non-linear regime
of perturbations. Recently, several analyses have tried to assess
the impact of such systematics on state-of-the-art cosmic shear sur-
veys such as the Canada–France–Hawaii Telescope Lensing Survey
(CFHTLenS; see e.g. Kitching et al. 2014; Planck Collaboration
XIV 2016). Since the non-linear evolution of density fluctuations
affects mostly the smaller (angular) scales, the simplest way to avoid
having to deal with non-linear perturbations is therefore to limit the
analysis to large cosmic scales. It is also well known that the phys-
ical scales at which linear theory does not hold any longer, knl, is
a redshift-dependent quantity, which monotonically increases with
redshift. That is to say, the deeper the survey the larger knl, i.e. the
more the number of modes available in the linear regime. Moreover,
another effect of non-linearities is to increase the covariance ma-
trix, in particular its non-Gaussian and supersample variance terms.
This clearly represents an additional reason for which a correct
treatment of non-linear scales is imperative not to assess wrongly
the constraining power of a future survey.

In this respect, Fig. 6 shows the redshift distributions of radio
(blue curves) and optical/near-IR (red curves) sources for Stage III
and Stage IV DETF cosmic shear surveys (dashed and solid lines,
respectively). Clearly, although radio surveys will in general detect
fewer sources than their optical counterparts, the former exhibit a
significant high-redshift tail. For example, SKA1 goes as deep as
a Euclid-like survey does, whilst the full SKA will observe non-
negligible number densities for sources at z > 3. For a start, this
represents a major complementarity between cosmic shear experi-
ments in the two bands. Moreover, it is a clear indication in favour
of radio–optical cross-correlation.

In this section, we are interested in quantifying how such a longer
lever arm possessed by radio experiments affects the robustness of
cosmological analyses.
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Figure 6. Redshift distribution of sources per deg2.

5.1 Amount of information from linear scales

A way to visualize this (cf. Heymans et al. 2013, fig. 3) is to
compute, for each bin pair, the peak redshift zpeak corresponding
to the comoving distance at which the product of the weak lensing
kernels for the two bins, WXi (z)WYj (z), peaks. Then, for each power
spectrum we calculate the total signal-to-noise ratio (SNR) of the
forecast measurement as

SNRij =

√√√√√√∑
�

(
C

XiYj

�

)2

σ 2
(
C

XiYj

�

) , (20)

where, if the signal is s, σ 2 (s) is the variance on its measurement.
Fig. 7 shows the SNR for each bin pair Xi − Yj as a function of the
corresponding peak redshift for Stage III and Stage IV DETF ex-
periments (left- and right-hand panels, respectively). It is straight-
forward to see that radio experiments (blue points) reach higher
redshifts compared to their optical/near-IR counterparts – although
the smaller source number density of SKA1 leads to overall smaller
SNRs compared to DES. The highest redshift bins of radio cata-
logues contain galaxies 30–50 per cent more distant than sources in
their optical/near-IR counterparts. Green points show the results for
the cross-correlation only of radio and optical/near-IR experiments.

Then, to quantify better the impact of such high-redshift infor-
mation for cosmological analyses, we also compute the same SNR
of equation (20) but considering only the linear matter power spec-
trum. In this case, we define a new metric

�
ij
nl =

(
SNRij

)2(
SNRij

lin

)2 , (21)

where the subscript ‘lin’ refers to the SNR of equation (20) com-
puted only using the angular cosmic shear power spectrum from
linear theory.4 The results are shown in Fig. 8. This gives us a proxy
for the fraction of information coming from non-linear scales, which

4 Note that this is not the same as saying that we only consider information
coming from linear scales.

have to be treated more carefully because the poorly understood ef-
fect of baryons and, in general, the non-linear growth of structures
demands some degree of ad hoc modelling (Semboloni, Hoekstra
& Schaye 2013; Fedeli 2014; Fedeli et al. 2014; Kitching et al.
2014). What this plot tells us is that, in the fixed multipole range
20 ≤ � ≤ 3000, the total SNR for the cosmic shear angular power
spectrum in a given redshift bin pair is �

ij
nl times what we would

get if all the scales considered were linear. Consider for instance the
highest redshift for DES and SKA1 (left-hand panel, rightmost red
and blue points): the information DES actually measures is more
than twice the naı̈ve linear-theory prediction, whereas for SKA1 this
is ∼1.5 times higher. In other words, the DES measurement is con-
taminated by more than 100 per cent by information from non-linear
scales, whilst SKA1 only by ∼50 per cent. We want to emphasize
that the case considered regards the highest redshift combination of
bins, and it is clear from the spread of the points in the plot that
for auto- and, especially, cross-correlations of lower redshift bins
the spread between optical/near-IR and radio surveys is even more
pronounced. Moreover, the right-hand panel of Fig. 8 demonstrates
that the high fidelity of SKA cosmic shear experiments to linear
theory is even higher for Stage IV DETF experiments.

5.2 Constraining dark energy at pivot redshift

Another way to assess how much cosmological parameter esti-
mation from a survey will be affected by information encoded in
linear/non-linear scales is to study the experiment sensitivity to dark
energy at the redshift at which the tightest constraints on its equa-
tion of state can be achieved. This is the so-called ‘pivot redshift’,
zp (Albrecht et al. 2009). If we recast the dark energy equation of
state as

w(a) = w0 + wa(1 − a) (22)

= w(ap) + wa(ap − a), (23)

where we remind the reader that the scale factor a(z) = 1/(1 + z)
and ap = a(zp), then through simple algebraic relations we get

zp = −
(
F−1

)
w0,wa(

F−1
)

w0,wa
+ (

F−1
)

wa,wa

. (24)

The forecast marginal error on w(ap) ≡ wp then reads

σ (wp) =

√√√√√(
F−1

)
w0,w0

−
[(

F−1
)

w0,wa

]2

(
F−1

)
wa,wa

. (25)

Fig. 9 shows the forecast constraints on the equation-of-state pa-
rameter at the pivot redshift, wp = w(zp), for the various exper-
iments considered. Again, blue, red and green are for radio and
optical/near-IR surveys and their cross-correlation. We can easily
notice the tightness of constraints from Stage IV DETF experiments
compared to that of Stage III surveys. On the other hand, it may seem
unnatural that the pivot redshift from the cross-correlation of DES
and SKA1 is larger than that of each survey alone. However, this is
primarily due to different degeneracies among cosmological param-
eters in the various experiments. As different survey combinations
probe the Universe’s geometry and the growth of cosmic structures
on different redshift ranges, their sensitivity to certain cosmological
parameters also varies. To appreciate this effect, in Table 1 we com-
pare the pivot redshift calculated according to equation (24) with
the full Fisher matrix, Fαβ (left-hand column), to that obtained using
the Fisher matrix for {w0, wa} only, Fw0,wa (right-hand column).
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Figure 7. SNR as a function of peak redshift.

Figure 8. Amount of SNR (squared) from non-linear scales with respect to linear theory.

Not being marginalized over all the other cosmological parameters,
the latter is insensitive to degeneracies between dark energy and
the other �CDM parameters. Thus, we can now appreciate how,
in principle, the deeper the median redshift of the experiment, the
higher the redshift at which dark energy is most tightly constrained.

6 D I S C U S S I O N A N D C O N C L U S I O N S

This paper is the third of a series on weak lensing cosmology with
the SKA. In Paper I we have compared the forecast constraining
power of Stages III and IV DETF cosmic shear surveys in the radio

band with their equivalent at the optical/near-IR wavelengths. Then,
in Paper II we have constructed a realistic pipeline for simulating
SKA cosmological weak lensing surveys. Here, we focus on real-
world effects such as contamination by various systematics and
ways to avoid them – in particular, by exploiting radio information
and synergies between radio and optical/near-IR measurements.

It is worth noting that the multiwavelength cosmic shear experi-
ments will have a major advantage in mitigating systematic effects,
thanks to the fact that we can analyse auto- and cross-correlations
between radio and optical/near-IR surveys separately. This can be
employed to test for new, unaccounted-for systematics. Let us
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Figure 9. Constraints on wp as a function of redshift.

Table 1. Comparison between zp from the full and the dark-
energy only Fisher matrices.

Fαβ Fw0,wa

SKA1 0.43 0.31
DES 0.40 0.22
SKA1×DES 0.44 0.25

SKA2 0.50 0.37
Euclid-like 0.45 0.28
SKA2×Euclid-like 0.45 0.32

consider the case where, on the one hand, the best-fitting values
of certain cosmological parameters, as reconstructed from either
radio or optical/near-IR experiments alone, are many σ s different
from each other. On the other hand, the cross-correlation of the
two experiments gives results in better agreement, say, with cosmic
microwave background (CMB) measurements or other data sets.
Then, this could imply that either or both of the two autocorrelation
surveys suffer from some kind of unknown systematic effect, which
in turn does not affect the cross-correlation.

To cover the widest possible range of systematic effects, we
scrutinize the impact on cosmological parameter estimation of three
different types of systematic errors: (i) experimental systematics;
(ii) intrinsic alignments and (iii) modelling of non-linear scales.
In the following, we draw the major conclusions for each of these
subtopics.

(i) Experimental systematics will mostly affect the measured
shear, γ obs = γ + γ sys, and their effects can be decomposed into an
additive and a multiplicative term such that γ sys = γ Aadd + γ mulγ .
The former may be regarded as a bias, whilst the latter as a cali-
bration error. In this respect, the major advantage of pursuing weak
lensing measurements in more than one band is represented by the
fact that we can thus correlate radio and optical/near-IR shear cata-
logues to obtain a cross-correlation cosmic shear power spectrum.
Since systematic errors for two completely different experimental
set-ups will not correlate, the cross-correlation is expected to be
free of additive systematics. This major result is presented in Figs 2

and 3. The case for multiplicative systematics, though, is more
subtle. This is because an overall calibration error will not cancel
when correlating radio and optical/near-IR data. However, this too
can be strongly alleviated by means of self-calibration, where we
put together all the information from autocorrelations of radio and
from optical/near-IR catalogues as well as their cross-correlation,
as shown in Fig. 4. This is a major result of this paper.

(ii) A naı̈ve approach to cosmic shear assumes that the intrinsic
distribution of galaxy ellipticities is random across the sky. How-
ever, this is known not to be true, as galaxies form within the large-
scale cosmic structure and thus experience the same gravitational
potential. As a result, physically close galaxies will be preferen-
tially aligned with each other, whilst foreground galaxies shaped by
a particular gravitational potential are expected to anticorrelate with
background galaxies lensed by the same potential. A possible way
to tackle this problem without losing much of a survey’s constrain-
ing power is self-calibration, where the clustering information on
galaxies’ three-dimensional position is employed to constrain a set
of IA nuisance parameters (e.g. Kirk et al. 2012). Following Brown
& Battye (2011), we here investigate a thoroughly different, though
complementary, approach. It relies on the polarization information
additionally available from radio weak lensing measurements, and
on the fact that a galaxy’s polarized emission is a proxy for the
galaxy’s intrinsic orientation but is unaffected by gravitational lens-
ing. Fig. 5 illustrates that, depending on the fraction of sources
for which polarization information is available and on the intrinsic
scatter of measurements of galaxy position angles, radio cosmic
shear and its cross-correlation with optical/near-IR data are capable
of recovering much of the cosmological information even when a
large number of IA nuisance parameters are included not to bias the
parameter estimation.

(iii) Cosmological analyses with the first generations of weak
lensing surveys have shown that a proper understanding of non-
linear scales is of utmost importance for cosmic shear to compete
with other cosmological probes like the CMB or galaxy clustering.
Concerning this, lensing in the radio band has the added value
of the high-redshift tail of the radio source redshift distributions
(see Fig. 6). This implies that the range of linear scales available
to radio cosmic shear surveys is larger than that of optical/near-
IR experiments, as shown in Figs 7 and 8. Therefore, radio weak
lensing appears to be less prone to systematic errors due to an
incorrect modelling of non-linear scales, and can be used as a cross-
check for optical/near-IR surveys.
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APPENDI X A : BI AS O N PARAMETER
ESTI MATI ON

To compute the bias expected on the best-fitting value of a cosmo-
logical parameter ϑα due to the neglect of a systematic effect, we
follow a Fisher matrix approach based on the concept of ‘nested
models’ (see e.g. Heavens et al. 2007; Camera et al. 2011c). Two
models are nested when the parameter space of the former (or ‘sim-
pler’ model) is contained within that of the latter. A straightforward
example of this is �CDM and dark energy: as presented at the end
of Section 2, the �CDM parameter space is a hypersurface of that
of dark energy. Namely, the dark energy equation-of-state param-
eters effectively represent two additional directions in the �CDM
parameter space.

Such a framework for nested models can be easily recast when
dealing with systematic effects. In this case, the additional term
in the observable due to systematics – the additive and multiplica-
tive systematics power spectra or the IA GI and II terms – can be
parametrized by an overall amplitude fsys. This is a fudge factor,
either equal to 1 (if the systematic effect is actually present) or 0.
Then, the parameter vector of our model becomes {ϑα} ∪ {f i

sys},
where {ϑα} is the set of the cosmological parameters of interest,
and {f i

sys} is the set of all the possible systematic effect fudge factors.
Then, if the correct underlying model does contain certain sys-

tematics, in the incorrect model where we neglect them, the maxi-
mum of the expected likelihood will not, in general, be at the correct
parameter values (see Heavens et al. 2007, fig. 1). The parameters
of the incorrect model will have to shift their values to compen-
sate the fact that {f i

sys} are being kept fixed at the incorrect fiducial
value {f i

sys = 0}. We can compute these shifts, i.e. the biases in the
cosmological parameter best-fitting values, according to

b(ϑα) = (
H−1

)
αβ

Gβi , (A1)

where G is a submatrix of the Fisher matrix for the full parameter
set {ϑα} ∪ {f i

sys}. (Note that summation over equal indices is as-
sumed here.) Now, it is worth spending a few words on H, as in
the literature different approaches have been followed. They can
basically be connected to two cases: whether (i) H is the Fisher
matrix for the cosmological parameters only, or (ii) it is a subset
of the Fisher matrix of the full parameter set. To understand this,
we shall consider a simple two-dimensional scenario of a Gaussian
likelihood L = −χ2/2. The chi-square reads

χ2(x) = (x − μ)F2D(x − μ)T, (A2)
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with x = (x, y) and F2D = �−1
2D. Here,

�2D =
(

σ 2
x �σxσy

�σxσy σ 2
y

)
(A3)

is the covariance matrix. The minimum of the chi-square is ob-
viously μ = (μx, μy). However, if we now disregard one of the
parameter axes, we cut the chi-square surface along, say, y = 0. In
this case, it is easy to compute the minimum of χ2(x, y = 0), which
is not μx but

μx − �σx

σy

μy. (A4)

The difference between the true minimum along the x-axis and
the one along the y = 0 surface is what we call the bias in the
reconstruction of μx. Now, if we take equation (A1) with H =
(F2D)1,1 and G = (F2D)1,2, we find exactly the result above –
where, in that case, μy = fsys ≡ 1. This means that H is a subset
of the full, cosmological+systematics Fisher matrix. Instead, the
use of H as the Fisher matrix for the cosmological parameters only
would correspond to H = (F1D)1,1 ≡ 1/σ 2

x .

A P P E N D I X B: STA B I L I T Y O F N U M E R I C A L
D E R I VAT I O N F O R FI S H E R MATR I C E S

One of the most important factors for the reliability of Fisher ma-
trices is the stability of the numerical derivatives of the observables
with respect to the cosmological parameters, ∂CXY

� /∂ϑα . For the
sake of clarity, let us simplify the notation and consider a single
observable f, function of a single parameter p. A common proce-
dure in this regard is to use the so-called five-point stencil, which
involves the computations of f(p) at five values of p, evenly spaced
in a neighbourhood of the fiducial value, p. However, the step size
δp by which one samples the p-line is critical, because if such step
size is too large, the incremental ratio

−f (p + 2δp) + 8f (p + δp) − 8f (p − δp) + f (p − 2δp)

12δp

(B1)

is not a good proxy of the true derivative

df

dp

∣∣∣∣
p=p

= lim
δp→0

f (p + δp) − f (p − δp)

δp
. (B2)

On the other hand, if δp is too small, numerical instabilities render
equation (B1) unreliable. Such instabilities are due to the fact that
one subtracts two numbers, f (p + δp) and f (p − δp), that are
almost equal. Therefore, it is clear that the choice of δp is of prime
importance.

The scenarios investigated in the present paper involve a large
number of observables and several cosmological parameters. More
specifically, we have to deal with auto- and cross-correlations of
10 redshift bins for the SKA (both for Phases 1 and 2) and 10
redshift bins for DES/Euclid-like, calculated for ∼150 multipoles �

and for a set of seven cosmological parameters {ϑα} plus up to 40
additional nuisance parameters. As a result, a case-by-case check
for all the ∂CXY

� /∂ϑα is highly time consuming and may result in a
bin- and �-dependent optimal step size for the steps, δϑα , depending
on how much the observables is sensitive to a specific parameter, in
a specific redshift bin and at a given angular scale.

To overcome this issue and check systematically the numerical
derivative stability, we have therefore implemented an alternative
pipeline, which works as follows.

(i) For each combination of experiments and bin pair, Xi − Yj,
multipole, �, and cosmological parameter, ϑα , we sample the
ϑα-line in 15 points around ϑα (this included). More precisely,
we take δϑα = 0, ±0.625, ±1.25, ±1.875, ±2.5, ±3.75, ±5
and ±10 per cent.

(ii.a) In the hypothesis that the neighbourhood is small enough
around ϑ , all the C

XiYj

� (ϑα) thus obtained should lie on a straight
line. We test this ansatz by testing if the spread between the linearly
fitted [C

XiYj

� (ϑα)]fit and the true values [C
XiYj

� (ϑα)]true is less than
1 per cent.

(ii.b) If this requirement is not met, we zoom in on the sampled
ϑα-range by cutting out a few values on the edges, until we reach
the requested accuracy.

(iii) For each given combination {Xi, Yj, �, ϑα}, the numeri-

cal derivative ∂C
XiYj

� /∂ϑα is therefore the slope of the linear
interpolation.

Lastly, we have made a further final check to ensure that not
only the numerical derivatives are reliable, but also the Fisher ma-
trices thus calculated are stable with respect to our procedure. To do
so, we have recomputed the Fisher matrices by randomly varying
each single ∂C

XiYj

� /∂ϑα – i.e. the various slopes of the linear fits
– by ±1σ estimated errors on the fit slope. Then, we have com-
pared the forecast marginal errors on the cosmological parameters,
σ (ϑα), in the two cases and we have found that the difference is
negligible.

APPENDI X C : VALI DATI ON O F THE FI S H ER
P RO C E D U R E A N D C O M PA R I S O N W I T H
PA PER I

In Paper I, we made a first comparison between Markov chain
Monte Carlo (MCMC) and Fishers matrices. We considered a num-
ber of simplifying factors, running MCMC in each case and com-
paring the marginal error on parameters for each run between the
Fisher matrix and MCMC (see Paper I, section 4.2, for additional
details). Here, we proceed further by exploring the full param-
eter space. To have a better comparison with MCMC, we here
include broad Gaussian priors mimicking the flat priors used in
the MCMC analysis. Specifically, these Gaussian priors are such
that their 1σ errors correspond to the edges of the top-hat func-
tion used for the flat priors. In Table C1, we present a com-
parison between forecast marginal errors obtained from MCMC
(from Paper I) and the Fisher matrices computed in the present
work.

A visual presentation of the same results is given in Fig. C1,
where the percentual relative difference between 1σ Fisher matrix
forecast marginal errors and 68 per cent MCMC estimated con-
fidence intervals on cosmological parameters is shown for all the
parameters present in Table C1. Left- and right-hand panels are,
respectively, for Stages III and IV DETF cosmic shear experiments,
with results from radio spectra in blue, from optical/near-IR ones
in red and their cross-spectra depicted in green. Solid and dashed
lines are only eye-guides to differentiate between the inclusion or
not of priors from Planck. The agreement is extremely good, with
a scatter much smaller than 10 per cent for most of the configura-
tions, in particular for Stage III surveys (cf. Wolz et al. 2012). We
also find some discrepancies between the two methods, for instance
when non-Gaussian contours are involved – as for the well-known
�m–σ 8 degeneracy – or when priors become particularly important
– as for dark energy parameters.
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Table C1. Forecast marginal errors from MCMC (Paper I) and Fisher matrices (present work).

σ (�m)/�m σ (σ 8)/σ 8 σ (w0) σ (wa)

MCMC Fisher MCMC Fisher MCMC Fisher MCMC Fisher

SKA1 0.083 0.082 0.040 0.041 0.52 0.54 1.6 1.6
SKA1+Planck 0.084 0.080 0.040 0.040 0.28 0.28 0.43 0.43
DES 0.056 0.057 0.032 0.033 0.43 0.46 1.4 1.5
DES+Planck 0.058 0.057 0.033 0.033 0.22 0.22 0.33 0.34
SKA1×DES 0.046 0.053 0.024 0.030 0.45 0.45 1.3 1.4
SKA1×DES+Planck 0.046 0.053 0.024 0.029 0.23 0.23 0.36 0.36

SKA2 0.010 0.011 0.0046 0.0049 0.14 0.17 0.42 0.48
SKA2+Planck 0.010 0.011 0.0047 0.0049 0.086 0.11 0.15 0.18
Euclid-like 0.011 0.012 0.0058 0.059 0.13 0.14 0.38 0.44
Euclid-like+Planck 0.012 0.012 0.0059 0.058 0.095 0.085 0.16 0.15
SKA2×Euclid-like 0.013 0.010 0.0064 0.0049 0.15 0.13 0.43 0.39
SKA2×Euclid-like+Planck 0.013 0.010 0.0064 0.0048 0.10 0.082 0.17 0.14

Figure C1. Percentual relative difference between forecasts from MCMC (Paper I) and Fisher matrices (present work).
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